Abstract:
An active probe card capable of improving testing bandwidth of a device under (DUT) test includes a printed circuit board; at least one probe needle, affixed to a first surface of the printed circuit board for probing the DUT; at least one connection member, electrically connected to the at least one probe needle; and an amplification circuit, formed on the printed circuit board and coupled to the at least one connection member for amplifying an input or output signal of the DUT.
Abstract:
The present disclosure provides a method of reusing electrical energy for a charge pump. The method comprises operating in a reusing phase after a boosting phase is completed; retrieving energy of parasitic capacitance in the reusing phase; and reusing the energy of the parasitic capacitance for an internal circuit.
Abstract:
A power circuit includes a first charge pump for converting a supply voltage into a first high voltage and a first low voltage, at least one second charge pump, each for increasing the first high voltage by a first variance value to a second high voltage, and at least one third charge pump, each for decreasing the first low voltage by a second variance value to a second low voltage. A difference between the first high and low voltages is less than a breakdown threshold. The second and third variance margins are less than the breakdown threshold.
Abstract:
An integrated circuit (IC) testing interface capable of upgrading an automatic test equipment (ATE) for testing a semiconductor device includes at least one pin for receiving or transmitting at least a test signal to a tester of the automatic test equipment, a plurality of digitizers coupled to the at least one pin for generating a digital signal, a processing means coupled to the plurality of digitizers for processing the digital signal, and a connection unit for connecting the processing means with a computing device for transmitting an output signal from the processing means to the computing device, where the IC testing interface is disposed between the tester and a prober of the automatic test equipment.
Abstract:
The present invention relates to a scan driving circuit, which comprises a decoding circuit, a plurality of level-shift driving circuits, and a control circuit. The decoding circuit produces a decoding signal according to a decoding control signal. The plurality of level-shift driving circuits are coupled to the decoding circuit and produce scan signal sequentially according to the decoding signal. The control circuit is coupled to the plurality of level-shift driving circuit. The control circuit produces a first control signal and a second control signal according to the decoding control signal and transmits the first and second control signals to the plurality of level-shift driving circuits for controlling their turning on and off. Accordingly, by means of the control circuit according to the present invention, the circuit area of each level-shift driving circuit can be reduced, and thus the cost can be reduced as well.
Abstract:
The present invention relates to a proximity sensing method for proximity sensing unit in a mobile device. The proximity sensing method comprises steps of comparing a sensed value of the proximity sensing unit with a predetermined offset value or a first predetermined range to determine if the sensed value is smaller than the predetermined offset value or if the sensed value is within the first predetermined range; and providing an offset value for confirming if an object is near the mobile device according to the determination that if the sensed value is smaller than the predetermined offset value or within the first predetermined range.
Abstract:
The present invention relates to a transmission interface device capable of calibrating the transmission frequency automatically, which comprises a clock generating unit, a data transmission unit, and a control unit. The clock generating unit is used for generating an operating clock, which determines a transmission frequency. The data transmission unit is used for connecting to a host and transmitting a plurality of data to the host or receiving the plurality of data from the host according to the operating clock. When the host or the data transmission unit detects transmission errors in the plurality of data, the host or the data transmission unit generates an error handling. The control unit generates an adjusting signal according to the error handling and transmits the adjusting signal to the clock generating unit for adjusting the transmission frequency of the operating clock.
Abstract:
A power conversion system in an electronic device is utilized for converting an input voltage of a power source terminal to a required voltage of a load circuit to provide power to the load circuit. The power conversion system includes a first voltage conversion circuit for converting the input voltage to the required voltage of the load circuit according to a first control signal; and a power control module for generating the first control signal according to a starting signal or a load voltage of the load circuit; wherein the load circuit receives the voltage outputted from the first voltage conversion circuit to perform operations.
Abstract:
An integrated circuit (IC) testing interface capable of upgrading an automatic test equipment (ATE) for testing a semiconductor device includes at least one pin for receiving or transmitting at least a test signal to a tester of the automatic test equipment, a plurality of digitizers coupled to the at least one pin for generating a digital signal, a processing means coupled to the plurality of digitizers for processing the digital signal, and a connection unit for connecting the processing means with a computing device for transmitting an output signal from the processing means to the computing device, where the IC testing interface is disposed between the tester and a prober of the automatic test equipment.
Abstract:
The present invention discloses a mobile phone comprising a gravity sensor, a processor, and a memory. The gravity sensor senses inertia data along a specific direction, the processor couples with the gravity sensor and receives a output signal from the gravity sensor, and the memory stores at least one personal information and operates under the processor's control. When either the gravity sensor or the processor detects a vertical free-fall motion, the processor performs a information security process to lock the personal information to become inaccessible.