Abstract:
The invention relates to a method for operating an air conditioner (1) for treating the air of a passenger compartment of a motor vehicle. The air conditioner (1) exhibits a refrigerant circuit (2) configured for a combined cooling unit and heat-pump mode and for a post-heating mode. In the heat-pump mode with a first and a second heat source, two heat sources differing from each other can be used. A temperature of the first heat source, a temperature of the second heat source, and a regulation characteristic number and a maximum pressure are taken into account in the refrigerant circuit (2) for operating the air conditioner (1) in a heat-pump mode. The invention additionally relates to a method for switching between the two heat-pump modes.
Abstract:
The invention relates to an air conditioning system for a motorized vehicle with means for conveying, for cooling, and for heating of air. The air conditioning system comprises a housing with flow guide devices and air vents, an evaporator, and a heat exchanger. The housing is developed with an air distribution element and a range of variation. The flow guide devices of the air vents are arranged within the air distribution element, and the heat exchanger is arranged within the range of variation. With the arrangement of the heat exchanger, it is possible to change the outer dimensions of the range of variation and therefore of the air conditioning system while maintaining unchanged functionality and by using identical components such that the air conditioning system can be adapted to the installation space of different motorized vehicle types.
Abstract:
The invention concerns an air-ducting transition element of an automotive air conditioner, which is characterized in that there is arranged inside the transition element a feedthrough for lines, wherein the feedthrough is a flow ducting element that divides the air flow through the transition element into at least two flow pathways.
Abstract:
A display unit for a motor vehicle, having a display area with a back-lit liquid crystal display device bounded by a border area is provided. The display unit includes a light source, and behind the display area a liquid crystal cell, a first polarizer and a second polarizer, the light source being configured to provide back-light illumination to the cell and the polarizers forming a pair of polarizers on opposite sides of the cell such that, in use, the first polarizer polarizes the illumination and the second polarizer either passes or blocks this illumination when the polarisation of the illumination is rotated by the cell. A first cover sheet extends over said cell, and a second cover sheet extends over the first cover sheet. One of these first and second cover sheets comprises a third polarizer and the other of these cover sheets comprises a neutral density filter, the third polarizer being aligned with the second polarizer such that the illumination passed by the second polarizer is passed by the third polarizer, and the first cover sheet is separated from the display area of the LCD device by a gap, such that ambient external light incident on the LCD device and reflected or scattered back towards the viewer from the display area is attenuated by two passes through the neutral density filter, and by two passes through the third polarizer.
Abstract:
A high voltage (HV) safety lock for HV components in a vehicle has an HV plug, including a safety bridge arranged in the HV plug and connected to a central vehicle control via an internal bus system within the vehicle or a simple switched signal via a decentral control and regulating unit of an HV component. The safety bridge is connected to an LV power supply configured with electric isolation from the HV system.
Abstract:
A refrigerant circuit of an air conditioning system for a passenger compartment of a motor vehicle having a primary circuit having a compressor configured to compress a refrigerant, a first heat exchanger in fluid communication with the compressor and configured to transfer heat between a refrigerant and the environment, a first expansion element in fluid communication with the first heat exchanger, and a second heat exchanger in fluid communication with the first expansion element and the compressor, the second heat exchanger configured to dehumidify intake air of the passenger compartment and a secondary circuit having a first flow pathway and a second flow pathway, the first flow pathway having a third heat exchanger in fluid communication with the compressor and configured to transfer heat from the refrigerant to the passenger compartment and a second expansion element in fluid communication with the third heat exchanger, and a third expansion element.
Abstract:
An air dehumidification unit of a heating, ventilating, and air conditioning system includes an air flow channel configured to guide a flow of air through an evaporator disposed therein, and a drainage channel coupled to the air flow channel. The drainage channel has an internal volume configured to receive a fluid condensed at the evaporator from the flow of air. The air dehumidification unit further includes a heating device configured to heat the internal volume of the drainage channel from outside of the internal volume of the drainage channel to militate against a formation of ice therein. The invention also relates to a method for dehumidifying the air in the heating, ventilating, and air conditioning system of a motor vehicle using the air dehumidification unit.
Abstract:
A method for optimizing the configuration of a pick-and-place machine utilizes a genetic algorithm that creates an initial population of possible configurations and selects an optimum configuration based upon lowest cycle time. The method then creates a next generation by selecting possible configurations from the prior generation and randomly mutating instructions. The method compares the mutated configuration having the lowest cycle time from the next generation and the configuration having the lowest cycle time from the prior generation, and selects the optimum configuration. The steps are repeated to evaluate additional generations of mutated configurations. After several mutated generations have been evaluated, the method creates a new initial population and evaluates the new initial population and mutated generations derived therefrom, compares the optimum configuration from the new initial populations with the optimum configuration from the prior initial population, and selects the optimum configuration. In this manner, the method may evaluate several initial populations and mutated generations therefrom in selecting the optimum configuration for use in operating the machine.
Abstract:
A flatwire connector suitable for the automotive environment is provided. The connector generally includes a male connector having a housing receiving the flatwire and a female connector having a housing structured to receive the male connector. The male connector has surfaces which firmly engage the upper and lower surfaces of the flatwire to provide mechanical support thereto. Additionally, a spring-loaded shield is provided which automatically covers the exposed conductive elements of the flatwire protecting them from the environment. A primary lock is formed which allows simple mating of the male and female connectors while requiring a minimal mating or insertion force. Finally, the unique structure of the cover and its slidable locking member provide a simple to use, but secure and protective secondary locking feature to the connector.
Abstract:
A support assembly for an independent rear suspension includes a generally-tubular central member having first end and a second end. A U-shaped end member is coupled to each end of the central member, such that the end members are structurally bridged by the central member. Lands defined on the ends of the arms of each end member are adapted to engage the vehicle frame rails through suitable isolation mounts. An attachment point defined on each end member is adapted to pivotally support a lateral link coupling a respective wheelend assembly to the support assembly. The central member advantageously defines at least a portion of a housing adapted to receive a driveline component, such as an electric motor, coupled to the vehicle's rear wheelend assemblies by a pair of shafts extending from the central member, with the further benefit that the shared suspension and driveline isolation mounts providing enhanced NVH characteristics.