Abstract:
A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Abstract:
Certain exemplary embodiments can provide a system, machine, apparatus, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a process, method, and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to, generating a gradient in an index of refraction of a material.
Abstract:
A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Abstract:
A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Abstract:
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to, via light from a light source, rendering an image on a retina.
Abstract:
An intraocular lens system is presented that comprises an electro-active lens comprising multiple independently controllable zones or pixels, and a controller capable of being remotely programmed.
Abstract:
An eyewear system including an eyewear frame and an application module. The eyewear frame including a docking station, and an electronic connector including a first set of preconfigured application connection points. The application module adapted to be mounted to the docking station, and including an electronic device configured to perform a function, and a second set of preconfigured application connection points corresponding to at least some of the first set of preconfigured application connection points. The second set of preconfigured application connection points including at least two different sub-function connections used to support the function of the electronic device.
Abstract:
A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides Correction for non-conventional refractive error to provide at least a part of the Wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Abstract:
A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.