Abstract:
An arrayed waveguide grating (AWG) device for use in an optical transceiver is disclosed, and can de-multiplex an optical signal into N number of channel wavelengths. The AWG device can include an AWG chip, with the AWG chip providing a planar lightwave (PLC) circuit configured to de-multiplex channel wavelengths and launch the same into output waveguides. A region of the AWG chip may be tapered such that light traveling via the output waveguides encounters an angled surface of the tapered region and reflects towards an output interface region of the AWG chip. Thus detector devices may optically couple to the output interface region of the AWG chip directly, and can avoid losses introduced by other approaches which couple an output of an AWG to detectors by way of a fiber array or other intermediate device.
Abstract:
A coaxial transmitter optical subassembly (TOSA) including an optical fiber coupling receptacle coupled to a laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The optical fiber coupling receptacle may include a housing having a first open end to receive a ferrule-terminated optical fiber. The receptacle may also include a fiber-coupling ferrule holding an optical fiber segment and secured within the housing to optically couple the optical fiber segment to a laser of the TOSA through a second open end of the housing opposite the first open end. The receptacle may further include a sleeve disposed on an interior surface of the housing to provide a cavity to secure the ferrule-terminated optical fiber and align the optical fiber to the optical fiber segment.
Abstract:
A multi-channel transmitter optical subassembly (TOSA) with an off-center fiber in an optical coupling is disclosed, and can provide passive compensation for beam displacement introduced by optical isolators. The optical coupling receptacle can include an optical isolator configured to receive a focused light beam from a focus lens within the TOSA. The optical coupling receptacle may be offset such that a center line of the focused light beam entering the optical isolator is offset from a center line of a fiber within optical coupling receptacle. Thus the optical isolator receives the focused light beam from the focus lens and introduces beam displacement such that an optical signal is launched generally along a center line of the fiber. Thus the expected beam displacement introduced by the optical isolator is eliminated or otherwise mitigated by the offset between a center line of the fiber and a center position of the focus lens.
Abstract:
Techniques are disclosed for filling gaps formed between a press-fit component and an optical subassembly housing to introduce a seal or barrier that can prevent or otherwise mitigate the ingress of contaminants. In an embodiment, a layer of sealant material is applied to one or more surfaces of an optical component prior to press-fitting the component into an optical subassembly housing. Alternatively, or in addition to applying sealant to one or more surfaces of an optical component, a layer of sealant material may be disposed on an interface formed between an outer surface of the optical subassembly housing and the optical component press-fit into the same. Techniques disclosed herein are particularly well suited for small form-factor optical subassemblies that include one or more optical components press-fit into openings of a subassembly housing during manufacturing.
Abstract:
The present disclosure is directed to a keyed optical component assembly that ensures that the same has a proper orientation when press-fit into or otherwise coupled to a complimentary opening of an optical subassembly housing. In an embodiment, the keyed optical component assembly includes a base portion defined by a first end and a second end disposed opposite the first end along a longitudinal axis. A first arcuate region extends from the first end towards the second end and transitions into a tapered region. A second arcuate region extends from the second end towards the first end and also transitions into the tapered region. Therefore, the tapered region extends between the first arcuate region and the second arcuate region, and generally tapers/narrows from the second arcuate region to the first arcuate region. The resulting shape of the base portion may generally be described as an asymmetric tear-drop shape.
Abstract:
The temperature at different locations along a multiplexed laser array may be monitored by sensing temperature at two locations within a transmitter optical subassembly (TOSA) package housing the laser array. The temperature at the two locations is used to determine a temperature tilt across the laser array. Estimated temperatures may then be determined at one or more other locations along the laser array from the temperature tilt. The estimated temperature(s) may then be used to adjust the temperature proximate the other locations, for example, for purposes of tuning lasers at those locations along the laser array to emit a desired channel wavelength. The TOSA package may be used in an optical transceiver in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
Abstract:
A two-section semiconductor laser includes a gain section and a modulation-independent grating section to reduce chirp. The modulation-independent grating section includes a diffraction grating for reflecting light and forms a laser cavity with the gain section for lasing at a wavelength or range of wavelengths reflected by the diffraction grating. The gain section of the semiconductor laser includes a gain electrode for driving the gain section with at least a modulated RF signal and the grating section includes a grating electrode for driving the grating section with a DC bias current independent of the modulation of the gain section. The semiconductor laser may thus be directly modulated with the modulated RF signal without the modulation significantly affecting the index of refraction in the diffraction grating, thereby reducing chirp.
Abstract:
A system is provided for aligning a photodetector array to optical outputs of an optical demultiplexer in a multi-channel receiver optical subassembly (ROSA). In one embodiment, the system may include a clamp alignment fixture configured to secure a position of a photodetector mounting bar within a ROSA housing, wherein the photodetector array is disposed on the photodetector mounting bar and the photodetector array includes a plurality of photodiodes. The system may further include a motion staging device configured to adjust an orientation of the photodetector mounting bar by varying an angle of the clamp alignment fixture. The adjustment may be based on observation of the location of an optical alignment signal relative to the plurality of photodiodes, the optical alignment signal projected onto the photodetector mounting bar by the optical demultiplexer.
Abstract:
An optical transceiver generally includes an injection locked (IL) laser configured to generate a transmit (Tx) optical signal for transmission over an optical network and a laser driver circuit configured to modulate the IL laser based on a Tx data signal. The Tx data signal may be provided to the optical transceiver for transmission over the optical network. The Tx data signal may include a crossing point level associated with a transition between a first signal level and a second signal level. The optical transceiver may also include a crossing point control circuit configured to apply distortion to the Tx data signal, the distortion to increase the crossing point level.