Abstract:
A method and apparatus for recycling a process fluid from a drain of a semiconductor process tool. The process fluid may be an acidic cobalt solution or an electroless cobalt solution used in a semiconductor process step to prevent electromigration in copper interconnects. The used process fluid is collected from the tool drain and recycled back to the tool inlet if a condition of the fluid is within a predetermined range. Otherwise, the used process fluid is drained from the system. The system may also operate in a bleed and feed mode where a portion of the used process fluid is periodically drained from the system.
Abstract:
This invention concerns an improved particulate composition for delivering a drug to the pulmonary system. Applicants disclose a method of identifying an optimal form of aerodynamically light particles which are highly dispersible. The particles of the instant invention are made by creating hollow, spherical drug particles (i.e., progenitor particles) that collapse in the process of particle formation, leading to wrinkled, thin-walled drug particles of very low envelope density. Additionally, Applicants have found that such particles are especially optimal for inhaled aerosols when the surface area parameter (σ) is greater than 2, optimally greater than 3.
Abstract:
A heat spreading apparatus for use in cooling of semiconductor devices includes a frame having a plurality of individual cells formed therein, each of the cells configured for filling with a material of selected thermal conductivity therein. The selected thermal conductivity of material within a given one of the cells corresponds to a thermal profile of the semiconductor device to be cooled.
Abstract:
A vehicle frame includes a pair of spaced frame rails and at least one cross member connecting the frame rails. A tower structure is on one of the spaced frame rails for supporting a floor of a load-carrying bed spaced above the frame rails.
Abstract:
The present invention relates to stabilized 99mTc radiopharmaceutical compositions, which include both a radioprotectant and one or more antimicrobial preservative(s), and hence have an extended lifetime of use. The radioprotectant is ascorbic acid, para-aminobenzoic acid, gentisic acid or a salt thereof with a biocompatible cation, and the antimicrobial preservative is one or more compound from the paraben series of preservatives. The invention is particularly useful for cationic, lipophilic 99mTc heart imaging agents such as Myoview™.
Abstract:
A cam-action expanding standoff connector and related method are disclosed for mounting a circuit board. The standoff connector includes a body and a plurality of mounting members having interior longitudinally-extending camming portions for engagement by a cam. A cam is configured to be positioned within the mounting members in a first position in which the mounting members are not expanded against the interior of a mounting opening and in a second position in which the cam engages the camming portions to expand the plurality of mounting members against the interior of the mounting opening. Since the camming action is horizontal only (purely radial), practically no vertical forces are applied to the circuit board and a best-fit alignment between a circuit board and heatsink can be established and maintained.
Abstract:
Improved aerodynamically light particles for delivery to the pulmonary system, and methods for their preparation and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm3 and a mass mean diameter between 5 μm and 30 μm. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear a-hydroxy-acid polyester backbone having at least one amino acid group incorporated herein and at least on poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 μm, can be used for enhanced delivery of a therapeutic or diagnostic agent to the alveolar region of the lung. The aerodynamically light particles optionally can incorporate a therapeutic or diagnostic agent, and may be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of a wide variety of incorporated agents.
Abstract:
Formulations have been developed for pulmonary delivery to treat or reduce the infectivity of diseases such as viral infections, especially tuberculosis, SARS, influenza and respiratory synticial virus in humans and hoof and mouth disease in animals. Formulations for pulmonary administration include a material that significantly alters physical properties such as surface tension and surface elasticity of lung mucus lining fluid, which may be a surfactant and, optionally, a carrier. The formulation may be administered as a powder where the particles consist basically of the material altering surface tension. The carrier may be a solution, such as an alcohol, although an aqueous solution may be utilized, or a material mixed with the material altering surface tension to form particles. These may include proteins such as albumin or polysaccharides such as dextran, which also has surface active properties, or polymers such as polyethylene oxide (PEO) or biodegradable synthetic polymers which can be used to encapsulate or deliver the materials to be delivered. Drugs, especially antivirals or antibiotics, may optionally be included with the formulation. These may be administered with or incorporated into the formulation.
Abstract:
An optical wireless local area network using line of sight optical links. The base station and terminal stations are provided with optical transceivers which include a transmitter array and detector array. The transmitter array consists of an array of resonant cavity light emitting diodes integrated using flip-chip technology with a CMOS driver circuit. The driver circuit includes constant bias, current peaking and charge extraction. The driver circuitry is compact and can be confined within a region underlying the corresponding light source. The detector array consists of an array of photo diodes, provided with sense circuitry consisting of a pre-amplifier and post-amplifier. The diodes and sense circuitry are also integrated using a flip-chip technique. The light emitter and the detector may include adaptive optical elements to steer and/or focus the light beams.