Abstract:
The present invention relates to: a method for manufacturing a transparent light emitting device, which can minimize the manufacturing time of a large-area high-resolution transparent light emitting device and maximize the productivity thereof by forming an integrated metal mesh circuit pattern through a UV imprinting technology; and a transparent light emitting device manufactured thereby.
Abstract:
A solar cell module includes solar cell strings including a plurality of solar cells, and conductive patterns for electrically coupling respective ones of the plurality of solar cells to each other, a first sealing film and a front substrate on the solar cell strings, and a second sealing film and a back substrate under the solar cell strings, wherein each of the plurality of solar cells includes bus bars on a back surface of a respective one of the solar cells, a plurality of finger lines protruding from the bus bars in a direction substantially perpendicular to the bus bars, and an insulating layer for covering the plurality of finger lines, wherein the conductive patterns are arranged in parallel along a length direction of the bus bars, overlap with the bus bars, and have a width greater than the a width of the bus bars.
Abstract:
Disclosed herein are an electroless surface treatment plated layer of a printed circuit board, a method for preparing the same, and printed circuit board including the same. The electroless surface treatment plated layer includes: electroless nickel (Ni) plated coating/palladium (Pd) plated coating/gold (Au) plated coating, wherein each of the electroless nickel, palladium, and gold plated coatings has a thickness of 0.02 to 1 μm, 0.01 to 0.3 μm, and 0.01 to 0.5 μm. In the electroless surface treatment plated layer of the printed circuit board, a thickness of the nickel plated coating is specially minimized to 0.02 to 1 μm, thereby making it possible to form an optimized electroless Ni/Pd/Au surface treatment plated layer.
Abstract:
In a slurry composition and a method of polishing a layer using the slurry composition, the slurry composition includes from about 3 to 20 percent by weight of an abrasive, from about 0.1 to 3 percent by weight of an ionic surfactant, from about 0.01 to 0.1 percent by weight of a nonionic surfactant, from about 0.01 to 1 percent by weight of a polish accelerating agent including an amino acid compound, and a remainder of an aqueous solution including a basic pH-controlling agent and water. The slurry composition including the nonionic surfactant and the polish accelerating agent may be used for speedily polishing a stepped upper portion of a silicon oxide layer, and may also enable a lower portion of the silicon oxide layer to function as a polish stop layer.
Abstract:
A method is provided for efficiently allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period provided to each station (STA) and a minimum amount of an uplink period allocated to each STA, and at least one sub PSMP frame indicating an uplink period additionally provided for an STA that transmitted a resource request message for remaining queued data in the uplink period indicated by the PSMP frame. If the uplink period indicated by the PSMP frame is insufficient to transmit the queued data, the STA transmits a data unit including a part of the queued data and a resource request message for the remaining queued data in the uplink period. After transmitting the resource request message, the STA receives the sub PSMP frame after the full period indicated by the sub PSMP frame, and transmits the remaining queued data to the AP in the uplink period indicted by the sub PSMP frame.
Abstract:
Disclosed is a method for detecting a hidden station in a specific station constituting a wireless communication network that includes receiving a frame after a lapse of an idle state interval longer than a predetermined waiting time; determining that there is a hidden station, if a size of the received frame is equal to a size of an Acknowledge (ACK) frame; and determining that there is no hidden station, if the size of the received frame is not equal to the size of the ACK frame.
Abstract:
Provided is a handover method for a mobile wireless network. The handover method for a mobile wireless network, including: receiving, by a mobile node, information on a new access router by requesting the information necessary for the handover from a previous access router in accordance with a handover initiation; sending a fast binding update message to the previous access router via the new access router by connecting to the new access router; receiving a packet from the new access router; and disconnecting from the previous access router.
Abstract:
A bracket for securing a side airbag for an automotive vehicle is provided. The bracket includes a mounting plate formed of a synthetic resin material, and including a main body and a coupling part projecting from an upper surface of the main body and having a hole, and a bracket clip including two support plates in contact with front and rear surfaces of the coupling part and having through-holes in communication with the hole, and a bent part connecting the two support plates at each one side.Therefore, it is possible to protect the bracket to prevent damage to or deformation of the bracket when a bolt is screwed, thereby maintaining the side airbag in an optimal state.
Abstract:
An apparatus is provided for allocating a transmission period in a wireless network system. An access point (AP) transmits a PSMP frame indicating a downlink period and an uplink period allocated to each station (STA), and at least one sub PSMP frame indicating an allocated downlink period for at least one of a retransmission of downlink data and a transmission of an ACK indicating successful receipt of uplink data. After exchanging data with the AP in the downlink and uplink periods indicated by the PSMP frame, an STA receives the each sub PSMP frame, and performs at least one of a reception of the retransmitted downlink data and a reception of the ACK in the downlink period indicated by the each sub MAP frame.
Abstract:
In the data transmission method, a MAC layer receives data from an upper layer, classifies the data according to destination addresses and traffic identifiers, aggregates the data by destination address and traffic identifier as a first transmission unit, aggregates the first transmission units having the identical destination address as a second transmission unit, and transmits the second transmission units having different destination addresses in a single frame. The data transmission method allows packets transferred from the upper layer to be hierarchically aggregated by DAs and TIDs and then packaged into a data unit for each destination such that it is possible to transmit the data at an optimal data rate for each destination terminal.