Abstract:
Embodiments of the present disclosure provide a channel state information feedback method, which includes: determining, by user equipment, N CSI-RS resources according to a quantity N, configured by a base station, of CSI-RS resources that need to be fed back; performing channel estimation on a port included in the N CSI-RS resources, to obtain channel state information in a horizontal dimension; then selecting M CSI-RS resources from the N CSI-RS resources; and feeding back channel state information of the M CSI-RS resources in the horizontal dimension and indication information of the M CSI-RS resources to the base station, so that the base station determines channel state information in a vertical dimension according to the indication information, so as to finally obtain channel state information in the two dimensions, thereby resolving a problem that channel state information in only a horizontal dimension is fed back during conventional channel estimation.
Abstract:
A method for measuring and feeding back channel information and a corresponding apparatus are provided. A first network device receives a reference signal, measures the reference signal to obtain a measurement result, and selects a first codebook from a first codebook set according to the measurement result; for different sub-vectors Wx (1) and Wx (2), a location of a non-zero vector in the Wx (1) is the same as a location of a non-zero vector in the Wx (2); and formation according to different structures is: for different sub-vectors Wx (1) and Wx (2), a location of a non-zero vector in the Wx (1) is different from a location of a non-zero vector in the Wx (2); and the first network device sends a codebook index to a second network device, where the codebook index corresponds to the first codebook selected from the first codebook set.
Abstract:
The present invention provides a method for assigning the number of control channel candidates and the number of blind detection times, a base station, and a user equipment. The method includes determining a first aggregation level set {L1i} and determining the number of EPDCCH candidates corresponding to each aggregation level in the {L1i}. {L1i} is formed by N aggregation levels supported by an EPDCCH. A second aggregation level set {L2j} is determined along with the number of EPDCCH candidates corresponding to each aggregation level in the {L2j}. {L2j} is formed by M aggregation levels supported by an EPDCCH to be detected, {L2j} is a subset of {L1i}, and the number of EPDCCH candidates corresponding to L2j in {L2j} is greater than or equal to the number of EPDCCH candidates corresponding to L2j in {L1i}.
Abstract:
Embodiments of the present invention provide methods for transmitting and receiving a control channel, a base station, and a user equipment, which relate to the communication field, and can solve a transmission problem of available changing transmission resources caused by introduction of an E-PDCCH. A method includes determining, by a terminal device, a resource set and resource elements (REs) of predetermined overheads in the resource set. The REs of the predetermined overheads include an RE of at least one of a paging channel and a synchronization channel, with at least one of following REs: an RE of a channel state information-reference signal (CSI-RS), an RE of a cell-specific reference signal (CRS), an RE of a demodulation reference signal (DMRS), or a muted RE. The terminal device receives from a base station, a control channel on an RE subset comprised in the resource set, wherein the RE subset comprises a part of the REs in the resource set and do not contain the REs of the predetermined overheads.
Abstract:
The embodiments of the present invention provide a method for configuring a reference signal, a base station and a user equipment. The method includes: receiving, by a first base station, candidate reference signal configuration information of a second base station transmitted by the second base station, and/or candidate reference signal configuration information of the first base station transmitted by an operation and maintenance entity (OAM); and configuring, by the first base station, a reference signal for a user equipment (UE) according to the candidate reference signal configuration information of the second base station, and/or, configuring, by the first base station, a reference signal for a UE according to the candidate reference signal configuration information of the first base station.
Abstract:
A method for measuring and feeding back channel information and a corresponding apparatus are provided. A first network device receives a reference signal, measures the reference signal to obtain a measurement result, and selects a first codebook from a first codebook set according to the measurement result; for different sub-vectors Wx (1) and Wx (2), a location of a non-zero vector in the Wx (1) is the same as a location of a non-zero vector in the Wx (2); and formation according to different structures is: for different sub-vectors Wx (1) and Wx (2), a location of a non-zero vector in the Wx (1) is different from a location of a non-zero vector in the Wx (2); and the first network device sends a codebook index to a second network device, where the codebook index corresponds to the first codebook selected from the first codebook set.
Abstract:
The embodiment of the disclosure discloses a base station, a mobile station and a method thereof. The base station includes a processor and a transceiver. The processor determines a first subgroup to which a first mobile station belongs, wherein the first mobile station is one of a plurality of mobile stations, the plurality of mobile stations are grouped into G groups based on spatial correlation, the mobile stations in each of the G groups are further grouped into S subgroups based on polarization, the mobile stations in a same subgroup have a same polarization and the mobile stations in different subgroups have different polarizations. The transceiver communicates with the first mobile station according to the polarization of the first subgroup. The embodiments of the disclosure utilize polarization jointly with the spatial correlation in dual structured procoding so that feedback overhead can be reduced.
Abstract:
Embodiments of the present disclosure disclose a message broadcast method, a base station, and user equipment. The message broadcast method includes: determining, by a base station, a piece of system subgroup information of system information of a first cell, where each piece of system subgroup information includes system information content that is applied to a user equipment group that corresponds to the system subgroup information. The method also includes broadcasting, to the user equipment group, the system subgroup information that corresponds to the user equipment group. In such a manner, system information that is generated due to a requirement of a new technology can be effectively reduced, and user equipment can be prevented from receiving information unrelated to the user equipment and triggering unnecessary behavior.
Abstract:
The present invention provides a method, base station, and user equipment for transmitting a control channel. Grouping is performed, according to an aggregation level of the to-be-transmitted control channel, on sub-blocks in physical resource blocks configured by the base station for the to-be-transmitted control channel, then interleaving is performed, and then candidate control channels are mapped to the interleaved sub-blocks, so that any candidate control channel of the to-be-transmitted control channel is sent on consecutive time-frequency resources as possible, and meanwhile different candidate control channels are on different PRB pairs as possible. In this way, the base station may have better flexibility during actual sending of the ePDCCH, thereby not only achieving a precoding gain and facilitating better transmission of control information, but also achieving a larger scheduling gain.
Abstract:
Embodiments of the present invention provide methods for detecting and sending downlink control information and devices. The method for detecting downlink control information includes: acquiring a pilot port determining parameter that corresponds to downlink control information needing to be detected; determining, according to the pilot port determining parameter, a first-type pilot port that corresponds to the downlink control information; and detecting the downlink control information according to the first-type pilot port. In the embodiments of the present invention, user equipment can correctly detect downlink control information.