Abstract:
An apparatus comprising: a memory and processing circuitry coupled to the memory, where the processing circuitry is configured to: associate with a master station, decode a trigger frame or a multi-user request-to-send (MU-RTS) frame from the master station, where the trigger frame or the MU-RTS frame comprises a first duration and a transmitter address, and respond to the trigger frame or the MU-RTS frame if a network allocation vector (NAV) is not set, or if the NAV is set and a saved transmission opportunity (TXOP) holder address for the NAV is the same as the transmitter address of the MU-RTS or trigger frame and the trigger frame or MU-RTS indicates the station is to respond.
Abstract:
Wireless devices, methods, and computer readable media are disclosed. A high-efficiency wireless local-area network (HEW) master station is disclosed. The HEW master station may include circuitry. The circuitry may be configured to generate one or more resource allocations of a bandwidth for one or more HEW stations. Each resource allocation for a first portion of the bandwidth may be a multiple of a basic resource allocation or the entire first portion of the bandwidth. There may be only one resource allocation for a second portion of the bandwidth that is at least as large as the first portion of the bandwidth. In some embodiments, each resource allocation for the second portion of the bandwidth may be a multiple of the basic resource allocation or the entire second portion of the bandwidth.
Abstract:
Apparatuses, methods, and computer readable media are disclosed for fragmentation of media access control service data units (MSDU) in a high-efficiency wireless local-area network. An apparatus of a access point or station comprising memory and processing circuitry coupled to the memory is disclosed. The processing circuitry is configured to fragment a media access control (MAC) service data unit (MSDU) into two or more MSDU fragments, and encapsulate the two or more MSDU fragments into two or more aggregated MSDUs (A-MSDUs); one or more A-MSDUs and one or more MAC protocol data units (MPDUs); or, two or more MPDUs. The processing circuitry may be further configured to encode a delimiter in front of a first fragment of the two or more MSDU fragments, where the delimiter indicates a length of the two or more MSDU fragments, and to encode each MPDU to comprise a sequence number.
Abstract:
Embodiments of an access point (AP), user station (STA), and method for channel sounding in a wireless network are generally described herein. The AP may transmit a null data packet (NDP) announcement to indicate an NDP time period reserved for transmission of an NDP by the AP. The AP may further transmit a trigger frame for sounding (TFS) to indicate a scheduled sounding feedback period for multiple STAs, which may include identifiers of the STAs. The AP may further receive sounding feedback from at least some of the STAs during the sounding feedback period.
Abstract:
Methods, apparatuses, and computer readable media for signaling high-efficiency packet formats using a legacy portion of the preamble in wireless local-area networks are disclosed. A high-efficiency (HE) wireless local area network (HEW) device including circuitry is disclosed. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields, and configure the L-SIG to signal to a second HEW device either a first packet format of the HE packet or a second packet format of the HE packet, where a length of the L-SIG modulo 3 is used to signal the first packet format or the second packet format. The circuitry may be configured to generate a duplicated L-SIG field with a polarity difference to indicate a third packet configuration of the HE packet or a fourth packet configuration of the HE packet.
Abstract:
Apparatuses, methods, and computer readable media are disclosed. A STA to detect a HE SIG may be configured to detect the HE SIG based on at least one from the following group: a flipped reserved bit, a scrambled portion of the HE SIG, and a rotation of a signal constellation of the HE SIG different than legacy rotations of: a rotation of a first signal constellation and no rotation of a second signal constellation, and no rotation of the first signal constellation and a rotation of the second signal constellation. The STA may determine that a reserved bit is the flipped reserved bit based on a bit being reversed from a legacy standard. The STA may unscramble a received signal field, determine whether a CRC indicates the HE-SIG contains errors, and if the CRC indicates there are no errors, then determine that the signal field is the HE SIG.
Abstract:
Wireless devices, methods, and computer readable media for synchronization in a wireless local-area network. A method on a wireless communication device may include tuning to a first subchannel based on a schedule received from an access point (AP) the schedule to indicate that the HEW device is assigned to the first subchannel. The method may further include determining a target beacon receive time and tuning to a second subchannel to receive the target beacon at the target beacon receive time. The method may further include receiving the target beacon on the second subchannel and tuning back to the first subchannel. A method on an AP for synchronization may include transmitting information that indicates a target beacon receive time on a subchannel. The method may include not transmitting to a wireless communication device operating on a second subchannel for a period of time before the target beacon receive time, and transmitting a target beacon on a first subchannel at the target beacon receive time.
Abstract:
Generally discussed herein are systems and apparatuses that may include frequency multiplexing in a DownLink (DL) Multi-User (MU) Multiple Input Multiple Output (MIMO) transmission. The disclosure also includes techniques of making and using the systems and apparatuses. According to an example, an apparatus may include circuitry to transmit to a first Station (STA) on a first sub-channel a first Medium Access Control (MAC) frame or a first preamble and transmit to a second STA on a second sub-channel different than the first sub-channel, a second MAC frame or a second preamble different from the first MAC frame and the first preamble, respectively.
Abstract:
Disclosed in some examples are methods, systems, and machine readable mediums which allow for wireless devices with limited echo cancellation capabilities to participate in full-duplex communications. In some examples, by carefully controlling transmission powers and the modulation and coding schemes (MCS) used in the transmissions, both devices can engage in full-duplex communication.
Abstract:
Apparatuses, computer readable media, and methods for indicating a resource allocation are disclosed. An apparatus of a high-efficiency wireless local area network (HEW) master station is disclosed. The HEW master station includes circuitry configured to generate a resource allocation for HEW stations, where the resource allocation includes a group identification and an index into a table. The circuitry is further configured to transmit the resource allocation to the HEW stations. The table may be a permutation table that indicates a sub-channel of a bandwidth for each of the HEW stations. The HEW master station may be configured to operate in accordance with orthogonal frequency division multi-access (OFDMA). The resource allocation may be part of a trigger frame that includes a duration for an uplink or downlink transmission opportunity, and the circuitry may be further configured to transmit data to the HEW stations in accordance with the resource allocation.