Abstract:
A radio transmitting apparatus, a radio receiving apparatus, a wireless communication method and a wireless communication system wherein even when a channel correlation is large, the channel capacity and the feedback amount can be improved. In ST401, a receiving apparatus (200) determines that the channel correlation value exceeds a predetermined threshold value. In ST402, a transmitting apparatus (100) is instructed to perform 42 MIMO transmission. In ST403, the transmitting apparatus (100) determines a pair of antennas exhibiting the highest channel correlation. In ST406, the receiving apparatus (200) uses, based on the pair information, a channel matrix, which comprises channel estimation values, to calculate a delay shift amount. In ST407, the delay shift amount is fed back to the transmitting apparatus (100). In ST408, the transmitting apparatus (100) uses the pair information and delay shift amount to combine SDM and a cyclic sample delay diversity, thereby transmitting data.
Abstract:
A wireless communication method capable of selecting an optimum relay station, while preventing degradation of the throughput. According to this wireless communication method, in a frame 2, a relay station (1) has a line quality being equal to or greater than Th and hence decides that the delay amount be Δt1, while a relay station (2) has a line quality being less than Th and hence decides that the delay amount be Δt2. The relay station (1) uses Δt1 of the frame 2 to transmit a relayed signal to a base station. On the other hand, recognizing, by a lapse of Δt2, that the relay station (1) used Δt1 to transmit the relayed signal, the relay station (2) stops the transmission of the relayed signal. Accordingly, the base station receives only the relayed signal from the relay station (1) having the better line quality. Thus, when the line quality of the relay station (1) is better than that of the relay station (2), the relayed signal from the relay station (1) can be preferentially transmitted.
Abstract:
A retransmission control scheme and a wireless communication apparatus wherein the efficiency of retransmission control is enhanced to further improve the system throughput. In this wireless communication apparatus (100), an error occurrence factor addressing part (140) receives information related to the error occurrence factor of a transmitted packet or information related to the schemes of forming or transmitting a retransmittal packet corresponding to that error occurrence factor, and switches, based on the received information, the schemes of forming or transmitting the retransmittal packet. In this way, the schemes of forming or transmitting the retransmittal packet can be switched in accordance with the error occurrence factor of the transmitted packet. At the end of receiving the retransmittal packet, therefore, the performing of a decoding processor the like in accordance with that scheme of forming or transmitting can enhance the efficiency of the retransmission control. As a result, the system throughput can be improved.
Abstract:
A base station device enabling prevention of an increase of the power consumption of a terminal and reduction of interference caused in neighboring cells. The base station device (100) has a specific reception dynamic range. A reception level information acquiring section (154) acquires reception level information on received signals from users (#1 to #N). On the basis of the reception level information, a selection section (156) selects a user acceptable in the reception dynamic range from the users (#1 to #N). A transmission permission notifying section (120) notifies the selected user of the permission of the uplink data transmission.
Abstract:
An inventive wireless communication apparatus that, in a wireless communication system to which a secret key scheme is applied, can generate a secret key, which is different from a secret key generated by a third party, even if a wireless signal is intercepted by the third part having an approximate propagation path environment to a receiving wireless communication apparatus. In the inventive apparatus, an eigenvalue selecting part (317) of a secret key generating part (207) selects a maximum one of MIMO channel eigenvalues received from an eigenvalue detecting part (206) and inputs the selected maximum eigenvalue to a quantizing part (327). The quantizing part (327) quantizes the magnitude of the maximum eigenvalue received from the eigenvalue selecting part (317) to produce and input a quantized data to a key generating part (337). The key generating part (337) uses a predetermined scheme to generate a secret key from the quantized data received from the quantizing part (327), and inputs the generated secret key to a control part or the like not shown.
Abstract:
A radio transmission device capable of improving channel estimation precision for each frequency. In this device, an FFT unit (103) subjects a data signal to a Fourier transformation. A signal substitution unit (108) substitutes the frequency component of a portion of a plurality of frequency components composing the Fourier-transformed data signal, for a pilot signal. An IFFT unit (109) subjects the data signal, the frequency component of which has been partially substituted for the pilot signal, to an inverse Fourier transformation. A transmission RF unit (111) transmits the inversely Fourier-transformed data signal on a single carrier.
Abstract:
An allocation section 101 in a base station apparatus of the present invention sets the transmission rate of a transmit signal for a communication terminal apparatus based on a DRC signal transmitted from that communication terminal apparatus. A power margin information detector 117 detects power margin information from a demodulated signal generated by a demodulator 115, and, using that power margin information, a power setting section 118 makes a setting so as to give the minimum transmission power value at which received signal characteristics in each communication terminal apparatus meet the desired quality. Using the set transmission power value, the base station apparatus transmits a transmit signal of the set transmission rate to a communication terminal apparatus. By this means it is possible to suppress interference to a communication terminal apparatus that performs adaptive modulation communication with another base station apparatus and a communication terminal apparatus that performs adaptive modulation communication with the local base station apparatus at the same time.
Abstract:
P/S conversion section 302 performs parallel/serial conversion of data sequences #1 through #4 input in parallel, in accordance with control by assignment control section 303, so that data to a higher-priority communication terminal is assigned to an upper bit in one symbol; M-ary modulation section 304 performs M-ary modulation on the data that has been subject to parallel/serial conversion; S/P conversion section 305 converts a symbol that has been subject to M-ary modulation to parallel form; multipliers 306-1 through 306-4 execute spreading processing on the symbols output in parallel; multiplexing section 309 multiplexes the symbol that has been subject to spreading processing with an assignment notification signal that has been subject to spreading processing; and radio transmitting section 310 transmits the multiplexed signal.
Abstract:
A sequence converting section 104 interchanges high-order bits where an error does not easily occur and low-order bits where an error easily occurs that are used by an M-ary modulating section 105 for each retransmission. The M-ary modulating section 105 performs M-ary modulation using the high-order bits and low-order bits interchanged for each retransmission. An M-ary modulated symbol is interleaved with an interleave pattern being different for each retransmission, and multicarrier transmitted via an OFDM transmitting section 109.
Abstract:
A radio transmitter and a pilot signal inserting method are provided for improving throughput. In the radio transmitter, an MCS deciding part (106) selects one of a plurality of modulating systems. An information generating part (108) decides an inserting position of a pilot signal corresponding to the selected modulating system. A modulating part (116) modulates a data signal by the selected modulating system. A signal arranging part (118) inserts the pilot signal into the modulated data signal and changes the inserting position of the pilot signal corresponding to the selected modulating system. A transmission RF part (124) transmits the data signal wherein the pilot signal is inserted.