Abstract:
An image decoding apparatus in which a size of at least one transformation unit in a coding unit is determined independently from a size of at least one prediction unit in the coding unit.
Abstract:
A method and apparatus for encoding and decoding motion information. The encoding method includes determining whether motion information of spatial prediction units that are spatially collocated to a current prediction unit and motion information of temporal prediction units that are temporally collocated to the current prediction are available; when the number of the motion information of the spatial prediction units and the motion information of the temporal prediction units is less than a predetermined number, generating additional candidate motion information by using the available motion information of the spatial prediction units and the motion information of the temporal prediction units such that the total number of pieces of candidate motion information is the predetermined number; and decoding motion information of the current prediction unit by using the ‘n’ pieces of motion information.
Abstract:
Encoding and decoding a motion vector using a motion vector of a current block of a current picture, which indicates a region corresponding to the current block in a first reference picture and one of generating a motion vector predictor from a motion vector of the adjacent block having a motion vector referring to the first reference picture among adjacent blocks encoded before the current block and a motion vector of an adjacent block referring to a second reference picture other than the first reference picture.
Abstract:
Encoding and decoding a motion vector using a motion vector of a current block of a current picture, which indicates a region corresponding to the current block in a first reference picture and one of generating a motion vector predictor from a motion vector of the adjacent block having a motion vector referring to the first reference picture among adjacent blocks encoded before the current block and a motion vector of an adjacent block referring to a second reference picture other than the first reference picture.
Abstract:
Encoding and decoding a motion vector using a motion vector of a current block of a current picture, which indicates a region corresponding to the current block in a first reference picture and one of generating a motion vector predictor from a motion vector of the adjacent block having a motion vector referring to the first reference picture among adjacent blocks encoded before the current block and a motion vector of an adjacent block referring to a second reference picture other than the first reference picture.
Abstract:
Provided are video encoding and decoding methods and apparatuses. The video encoding method includes: encoding a video based on data units having a hierarchical structure; determining a context model used for entropy encoding a syntax element of a data unit based on at least one piece of additional information of the data units; and entropy encoding the syntax element by using the determined context model.
Abstract:
A method of decoding a video includes determining an initial value of a quantization parameter (QP) used to perform inverse quantization on coding units included in a slice segment, based on syntax obtained from a bitstream; determining a slice-level initial QP for predicting the QP used to perform inverse quantization on the coding units included in the slice segment, based on the initial value of the QP; and determining a predicted QP of a first quantization group of a parallel-decodable data unit included in the slice segment, based on the slice-level initial QP.
Abstract:
Provided are methods and apparatuses for encoding and decoding a motion vector including a method of decoding that includes obtaining a current coding unit hierarchically split from a maximum coding unit according to a current depth, obtaining a prediction mode information of a current prediction unit in the current coding unit from bitstream, when a prediction mode of the current prediction unit is inter-prediction mode, determining motion vector predictor candidates from among motion vectors of neighboring prediction units adjacent to the current prediction unit, and determining a motion vector predictor of the current prediction unit from among the motion vector predictor candidates, wherein the neighboring prediction unit comprises a first block directly to the left side of a leftmost block among blocks located directly to a bottom side of the current prediction unit and a second block located directly to a upper side of the first block.
Abstract:
Provided are a method and apparatus for encoding a video by using block merging and a method and apparatus for decoding a video by using block merging. The method of encoding includes: determining an encoding mode indicating a current data unit for encoding of a picture and an encoding method including prediction encoding performed for the current data unit; determining an occurrence of merging with at least one neighboring data unit based on at least one of the encoding mode and a prediction mode; and determining prediction mode information, merging related information, and prediction related information, and determining encoding information of the data unit including the prediction mode information, the merging related information, and the prediction related information.
Abstract:
Provided are a method and apparatus for encoding a video by using block merging and a method and apparatus for decoding a video by using block merging. The method of encoding includes: determining an encoding mode indicating a current data unit for encoding of a picture and an encoding method including prediction encoding performed for the current data unit; determining an occurrence of merging with at least one neighboring data unit based on at least one of the encoding mode and a prediction mode; and determining prediction mode information, merging related information, and prediction related information, and determining encoding information of the data unit including the prediction mode information, the merging related information, and the prediction related information.