Surface enhanced Raman spectroscopy employing vibrating nanorods
    161.
    发明授权
    Surface enhanced Raman spectroscopy employing vibrating nanorods 有权
    使用振动纳米棒的表面增强拉曼光谱

    公开(公告)号:US08390804B2

    公开(公告)日:2013-03-05

    申请号:US12697136

    申请日:2010-01-29

    CPC classification number: G01J3/44 G01N21/658

    Abstract: A surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a plurality of nanorods configured to vibrate. The apparatus includes the nanorods having tips at free ends opposite an end attached to a substrate. The tips are configured to adsorb an analyte and to vibrate at a vibration frequency. The apparatus further includes a vibration source configured to vibrate the free ends of the nanorods at the vibration frequency in a back-and-forth motion. Vibration of the nanorods is configured to facilitate detection of a Raman scattering signal emitted by the analyte adsorbed on the nanorod tips. The system further includes a synchronous detector configured to receive the Raman signal and to be gated cooperatively with the vibration of the nanorods. The method includes inducing a vibration of the nanorods, illuminating the vibrating tips to produce a Raman signal, and detecting the Raman signal using the detector.

    Abstract translation: 表面增强拉曼光谱(SERS)装置,系统和方法采用配置成振动的多个纳米棒。 该装置包括纳米棒,其具有与连接到基底的端部相对的自由端处的尖端。 尖端被配置为吸附分析物并以振动频率振动。 该装置还包括一个振动源,其构造成以往复运动的振动频率使纳米棒的自由端振动。 纳米棒的振动被配置为便于检测由吸附在纳米棒尖端上的分析物发射的拉曼散射信号。 该系统还包括一个同步检测器,其被配置为接收拉曼信号并与纳米棒的振动协同地门控。 该方法包括诱导纳米棒的振动,照亮振动尖端以产生拉曼信号,以及使用检测器检测拉曼信号。

    MULTI-PILLAR STRUCTURE FOR MOLECULAR ANALYSIS
    162.
    发明申请
    MULTI-PILLAR STRUCTURE FOR MOLECULAR ANALYSIS 审中-公开
    用于分子分析的多支架结构

    公开(公告)号:US20130040862A1

    公开(公告)日:2013-02-14

    申请号:US13636799

    申请日:2010-04-20

    CPC classification number: G01N21/658

    Abstract: A multi-pillar structure for molecular analysis is provided. The structure comprises at least two nanopoles, each nanopole attached at one end to a substrate and freely movable along its length. The opposite ends of the at least two nanopoles are each capable of movement toward each other to trap at least one analyte molecule at their opposite ends. Each nanopole is coated with a metal coating. An array of such multi-pillar structures is also provided. A method for preparing the multi-pillar structure is further provided.

    Abstract translation: 提供了一种用于分子分析的多支柱结构。 该结构包括至少两个纳米微粒,每个纳米孔一端连接到基底上,并可沿其长度自由移动。 至少两个纳米球的相对端各自能够相互移动以在其相对端捕获至少一种分析物分子。 每个纳米孔涂有金属涂层。 还提供了这种多支柱结构的阵列。 还提供了一种制备多支柱结构的方法。

    Surface-enhanced Raman spectroscopy device and a mold for creating and a method for making the same
    163.
    发明授权
    Surface-enhanced Raman spectroscopy device and a mold for creating and a method for making the same 有权
    表面增强拉曼光谱装置及其制造用模具及其制造方法

    公开(公告)号:US08314932B2

    公开(公告)日:2012-11-20

    申请号:US12771440

    申请日:2010-04-30

    CPC classification number: G02B1/12 G01N21/658

    Abstract: A surface-enhanced Raman spectroscopy device includes a substrate, and an ultraviolet cured resist disposed on the substrate. The ultraviolet cured resist has a pattern of cone-shaped protrusions, where each cone-shaped protrusion has a tip with a radius of curvature equal to or less than 10 nm. The ultraviolet cured resist is formed of a predetermined ratio of a photoinitiator, a cross-linking agent, and a siloxane based backbone chain. A Raman signal-enhancing material is disposed on each of the cone-shaped protrusions.

    Abstract translation: 表面增强拉曼光谱装置包括基板和设置在基板上的紫外线固化抗蚀剂。 紫外线固化抗蚀剂具有锥形突起的图案,其中每个锥形突起具有等于或小于10nm的曲率半径的尖端。 紫外线固化的抗蚀剂由光引发剂,交联剂和基于硅氧烷的主链以预定比例形成。 拉曼信号增强材料设置在每个锥形突起上。

    Method to Form a Device by Constructing a Support Element on a Thin Semiconductor Lamina
    164.
    发明申请
    Method to Form a Device by Constructing a Support Element on a Thin Semiconductor Lamina 失效
    通过在薄型半导体层上构造支撑元件来形成器件的方法

    公开(公告)号:US20120220068A1

    公开(公告)日:2012-08-30

    申请号:US13450414

    申请日:2012-04-18

    CPC classification number: H01L31/1892 H01L31/0747 H01L31/1864 Y02E10/50

    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved.Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.

    Abstract translation: 描述了半导体组件,其中在半导体层的表面上构造支撑元件。 形成厚度约为50微米或更小的薄层之后,例如通过镀覆或通过施加前体和原位固化来形成支撑元件,得到支撑元件,其可以用于 例如,金属,陶瓷,聚合物等。这与预先形成的支撑元件形成对比,该预制形成的支撑元件在其形成之后固定到层板上,或者与施加器晶片相接触,该晶片随后被切割。 原位制造支撑元件可以避免使用粘合剂将薄片附着到永久支撑元件上。 在一些实施例中,该工艺流程允许薄层在高温下退火,然后在该退火之后具有在层的每个表面上形成的非晶硅层。

    Method to form a device by constructing a support element on a thin semiconductor lamina
    166.
    发明授权
    Method to form a device by constructing a support element on a thin semiconductor lamina 有权
    通过在薄半导体层上构造支撑元件来形成器件的方法

    公开(公告)号:US08173452B1

    公开(公告)日:2012-05-08

    申请号:US12980424

    申请日:2010-12-29

    CPC classification number: H01L31/1892 H01L31/0747 H01L31/1864 Y02E10/50

    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to a rigid or semi-rigid pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved. Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element; such adhesives may be unable to tolerate processing temperatures and conditions required to complete the device. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal. A device may be formed which comprises the lamina, such as a photovoltaic cell.

    Abstract translation: 描述了半导体组件,其中在半导体层的表面上构造支撑元件。 形成厚度约为50微米或更小的薄层之后,例如通过镀覆或通过施加前体和原位固化来形成支撑元件,得到支撑元件,其可以用于 例如,金属,陶瓷,聚合物等。这与刚性或半刚性的预成形支撑元件形成对比,该刚性或半刚性的预成型支撑元件在其形成之后固定到层板上,或者与施加器晶片相接触,其中层板随后被切割。 原位制造支撑元件可以避免使用粘合剂将薄片附着到永久支撑元件上; 这种粘合剂可能不能容忍完成装置所需的加工温度和条件。 在一些实施例中,该工艺流程允许薄层在高温下退火,然后在该退火之后具有在层的每个表面上形成的非晶硅层。 可以形成包括层的器件,例如光伏电池。

    Optical devices for surface enhanced Raman spectroscopy
    167.
    发明授权
    Optical devices for surface enhanced Raman spectroscopy 失效
    用于表面增强拉曼光谱的光学器件

    公开(公告)号:US08134702B1

    公开(公告)日:2012-03-13

    申请号:US12574379

    申请日:2009-10-06

    CPC classification number: G01J3/44 G01N21/658 Y10T29/49865

    Abstract: An optical device for surface enhanced Raman spectroscopy includes a substrate, and at least one antenna established thereon. The at least one antenna including at least two segments, where each segment is formed of a metal having a predetermined volume and a predetermined contact angle with respect to the substrate. A gap is located between the two segments. The gap has a controllable size such that the at least one antenna resonates at a predetermined frequency that corresponds with the gap.

    Abstract translation: 用于表面增强拉曼光谱的光学装置包括衬底和建立在其上的至少一个天线。 所述至少一个天线包括至少两个段,其中每个段由具有预定体积的金属和相对于衬底的预定接触角形成。 两个部分之间有间隙。 间隙具有可控制的尺寸,使得至少一个天线以与间隙对应的预定频率谐振。

    Type selective and polarization selective device for Raman spectroscopy
    168.
    发明授权
    Type selective and polarization selective device for Raman spectroscopy 有权
    用于拉曼光谱的选择性和偏振选择性装置

    公开(公告)号:US07907275B2

    公开(公告)日:2011-03-15

    申请号:US12488318

    申请日:2009-06-19

    CPC classification number: G01J3/44 G01J3/02 G01J3/0224 G01N21/658

    Abstract: A type and polarization selective device for Raman spectroscopy includes a set of at least two antennas and a gap at their intersection. First antenna geometry is such that it is configured to resonate, for first or second (different from the first) polarization, at a predetermined stimulation frequency of a material for which Raman scattering is to be studied, or at a Stokes or anti-Stokes frequency corresponding with the material when excited at stimulation frequency. Second antenna geometry is such that it is configured to resonate, for the other of second or first polarization, at the Stokes frequency when the first antenna is configured to resonate at the stimulation or anti-Stokes frequency, or at the anti-Stokes frequency when the first antenna is configured to resonate at the stimulation or Stokes frequency, or at the stimulation frequency when the first antenna is configured to resonate at the Stokes or anti-Stokes frequency.

    Abstract translation: 用于拉曼光谱的类型和偏振选择装置包括至少两个天线的集合和它们的相交处的间隙。 第一天线几何形状使得其被配置为在要研究拉曼散射的材料的预定刺激频率下或在斯托克斯或反斯托克斯频率下谐振第一或第二(不同于第一极化)的极化 在刺激频率下激发时对应材料。 第二天线几何形状使得当第一天线被配置为以刺激或反斯托克斯频率或反斯托克斯频率谐振时,或者在反斯托克斯频率下,其被配置为在第二或第一极化中的另一个中以斯托克斯频率谐振, 第一天线被配置为在刺激或斯托克斯频率或刺激频率下谐振,当第一天线被配置为以斯托克斯或反斯托克斯频率谐振时。

    STRUCTURE FOR SURFACE ENHANCED RAMAN SPECTROSCOPY
    169.
    发明申请
    STRUCTURE FOR SURFACE ENHANCED RAMAN SPECTROSCOPY 有权
    表面增强拉曼光谱的结构

    公开(公告)号:US20100253940A1

    公开(公告)日:2010-10-07

    申请号:US12416907

    申请日:2009-04-01

    CPC classification number: G01N21/658 G01N2021/058 Y10S977/712

    Abstract: A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.

    Abstract translation: 本文公开了表面增强拉曼光谱的结构。 衬底具有垂直地配置的堆叠。 堆叠包括至少两个金属层和其间的至少一个电介质层。 堆叠的每个层具有受控的厚度,并且所述至少两个金属层中的每一个被配置为表现出等离子体共振的预定特性。

    MIXED-SCALE ELECTRONIC INTERFACES
    170.
    发明申请
    MIXED-SCALE ELECTRONIC INTERFACES 有权
    混合尺寸电子接口

    公开(公告)号:US20100197117A1

    公开(公告)日:2010-08-05

    申请号:US12761300

    申请日:2010-04-15

    Abstract: Certain embodiments of the present invention are directed to a method of programming nanowire-to-conductive element electrical connections. The method comprises: providing a substrate including a number of conductive elements overlaid with a first layer of nanowires, at least some of the conductive elements electrically coupled to more than one of the nanowires through individual switching junctions, each of the switching junctions configured in either a low-conductance state or a high-conductance state; and switching a portion of the switching junctions from the low-conductance state to the high-conductance state or the high-conductance state to the low-conductance state so that individual nanowires of the first layer of nanowires are electrically coupled to different conductive elements of the number of conductive elements using a different one of the switching junctions configured in the high-conductance state. Other embodiments of the present invention are directed to a nanowire structure including a mixed-scale interface.

    Abstract translation: 本发明的某些实施例涉及一种编程纳米线至导电元件电连接的方法。 该方法包括:提供包括多个覆盖有第一纳米线层的导电元件的衬底,至少一些导电元件通过单独的开关结与多于一个的纳米线电耦合,每个开关结配置在 低电导状态或高电导状态; 以及将所述开关结的一部分从所述低电导状态切换到所述高电导状态或所述高电导状态至所述低电导状态,使得所述第一纳米线层的单个纳米线电耦合到不同的导电元件 使用在高电导状态下配置的不同的一个开关结的导电元件的数量。 本发明的其它实施方案涉及包括混合规模界面的纳米线结构。

Patent Agency Ranking