Abstract:
A light-emitting device and the fabrication method thereof. A substrate is provided. A plurality of active elements are formed on the substrate, defining a plurality of pixel areas. A color filter is formed on the pixel areas. The surface of the color filter is planarized to reduce roughness. An electrode is formed on the color filter. An light-emitting layer is formed on the electrode. A second electrode is formed on the light-emitting layer.
Abstract:
A system for displaying images. The system comprises a thin film transistor (TFT) device comprising a substrate having a pixel region. An active layer is disposed on the substrate of the pixel region, comprising a channel region, a pair of source/drain regions separated by the channel region. The channel region comprises dopants with a first conductivity type and a second conductivity type opposite to the first conductivity type. A gate structure is disposed on the active layer, comprising a stack of a gate dielectric layer and a gate layer. A method for fabricating a system for displaying images including the TFT device is also disclosed.
Abstract:
A system for displaying image comprising an OLED panel. The OLED panel comprises a display area, a power line and a cathode line. The U-shaped power line is located on the first side, the second side and the third side of the OLED panel. The cathode line is located on the fourth side of the OLED panel.
Abstract:
A system for displaying images comprises a thin film transistor (TFT) device comprising a substrate having a pixel region and a terminal region. A first conductive layer is disposed on the substrate, comprising a gate electrode for a thin film transistor in the pixel region and at least one track in the terminal region. An interlayer dielectric layer is disposed on the substrate, covering the thin film transistor and the track. A second conductive layer is disposed on the interlayer dielectric layer in the pixel region, electrically connected to the thin film transistor to serve as a source/drain electrode thereof and electrically connected to the track in the terminal region. A planarization layer is disposed on the interlayer dielectric layer in the pixel region.
Abstract:
A pixel driving circuit for use in an active matrix electron luminescent display includes a transistor, a capacitor and an organic light-emitting diode. The capacitor has a first and a second ends coupled to the gate electrode of the transistor and a ground voltage, respectively. The organic light-emitting diode has a P and an N electrode coupled to the source electrode of the transistor and the ground voltage, respectively. The capacitor is charged by a driving current received from a data line to generate a specified voltage to bias the transistor and the organic light-emitting diode in the memorizing state, and the transistor and the organic light-emitting diode are further biased with the specified voltage in the emission state.
Abstract:
A transport system for an evaporation device comprises a robot holding a substrate and a mask disposed on the robot. When the substrate is transported by the robot, the mask covers the substrate to prevent contamination. The robot has a fork holding the substrate, and the mask is disposed thereon. The mask is disposed under the substrate, specifically between the substrate and the fork.
Abstract:
A pixel driving circuit for use in an active matrix organic light-emitting diode with threshold voltage compensation includes a transistor, a first capacitor and a second capacitor. The organic light-emitting diode is in communication with the transistor. The first capacitor has a first and a second ends, wherein the first end is coupled to a gate electrode of the transistor. The second capacitor has a third and a fourth ends coupled to the second end of the first capacitor and a ground voltage, respectively. A threshold voltage of the transistor is stored in the first capacitor in a first state, a driving voltage received from a data line is stored in the second capacitor in a second state, and the gate electrode of the transistor is biased with a specified voltage applied to the first and the second capacitors interconnected in series in a third state. A current passing through the organic light-emitting diode is controlled accordingly.
Abstract:
A method of fabricating a polysilicon film includes: forming a seed layer on a surface of a substrate; forming a silicon layer over the surface of the seed layer; and performing a laser annealing process to transform the silicon layer into a polysilicon layer at a laser energy equal to or greater than that needed to cause complete melting of the silicon layer.
Abstract:
A system for displaying an image includes a plurality of pixels each having a first organic light-emitting device (OLED), a second OLED and a third OLED. The pixel includes a first electrode layer, a first organic light-emitting layer, a second organic light-emitting layer, a second electrode layer and a color filter. The first organic light-emitting layer is disposed on the first electrode layer and within the first OLED and the second OLED. The second organic light-emitting layer is disposed on the first electrode layer and within the second OLED and the third OLED so that the first and second organic light-emitting layers overlap within the second OLED. The second electrode layer is disposed on the first organic light-emitting layer and the second organic light-emitting layer. The color filter is disposed within the second OLED.
Abstract:
A reflective liquid crystal display disclosed herein includes a transistor substrate, a color filter substrate, a first lower electrode, a first upper electrode, a first transparent insulator, a second transparent insulator, a second lower electrode, a second upper electrode and a liquid crystal layer. The first lower electrode, the first transparent insulator and the second lower electrode are formed sequentially on the top surface of the transistor substrate. The first upper electrode, the second transparent insulator and the second upper electrode are fabricated sequentially on the bottom surface of the color filter substrate. The liquid crystal layer is sandwiched between the second lower electrode and the second upper electrode. One of the first lower electrode and the second lower electrode is electrically connected to a plurality of transistors and reflects the external light.