Abstract:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system can also estimate UV intensity for a time in the future at a geographic location based on the forecast UV index data, and predict UV dose and vitamin D generation for the user corresponding to user defined scenarios. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
Abstract:
A method, apparatus, and a computer program is provided. The method comprises: determining an ambient light value from ambient light data provided by at least one ambient light sensor, in dependence upon the spectral distribution of the ambient light data provided by the at least one ambient light sensor and a manufacturer of the at least one ambient light sensor.
Abstract:
A system for measuring light intensity of a specific location and wirelessly transferring the light intensity data contains at least one light intensity sensing assembly and a computing device. The light intensity data is recorded by the light intensity sensing assembly and is wirelessly transferred to the computing device. The light intensity sensing assembly contains a dome lens, a photocell, a processing unit, a wireless data-transferring module, and a portable power source. The photocell is centrally mounted within the dome lens in order to receive a maximum amount of light. The photocell is electronically connected to the processing unit. In order to transmit the light intensity data, the processing unit is electronically connected to the wireless data transfer module. The photocell, the processing unit, and the wireless data-transferring module are powered by the portable power source.
Abstract:
A UV dosimetry system comprises a wearable unit and a mobile computing device. The wearable unit measures the UV irradiance intensity and wirelessly communicates with the mobile computing device. The UV dosimetry system supports multi-user control and can link one mobile computing device with multiple wearable units. The UV dosimetry system processes the measured UV irradiance intensity to calculate the UV index (UVI) and the sensor site specific UV dose. It can also calculate the total absorbed UV dose and vitamin D production by taking into account user specific factors. The UVI data measured by a plurality of UV meters such as the disclosed UV dosimetry system are crowd sourced to a remote server together with the location and time data of the measurement. The remote server excludes invalid UVI measurement and generates UVI maps showing time-varying distribution of UVI data at different locations.
Abstract:
An electronic device may be provided with light sensors. The electronic device may have an electronic device housing in which a display is mounted. The display may have a transparent layer such as a transparent display cover layer, a thin-film transistor layer, or a color filter layer. An opaque masking layer such as a layer of black ink may be used to cover an inner surface of the transparent layer in an inactive area of the display. Sensor window openings may be formed in the black ink layer. A layer of ink may be formed in each sensor window opening. Each layer of ink may have a diffuse reflectivity that is matched to that of the black ink. A diffuser layer such as a polymer coating layer with light-scattering particles may be coated on the inner surface of the layer of ink in a sensor window opening.
Abstract:
A display apparatus includes: a display panel configured to display an image; a window on the display panel having a transmissive area through which the image is transmitted and a non-transmissive area adjacent to the transmissive area, a case configured to accommodate the display panel and being coupled to the window; and a light sensor accommodated in the case at the non-transmissive area. The window includes a base member and a printed layer, and the base member has a first portion at the non-transmissive area and a second portion extending from the first portion at the transmissive area. The first portion has a curved upper surface and a recess. The printed layer is on a lower surface of the first portion and has an opening corresponding to the light sensor. The recess has a flat bottom surface overlapping the light sensor.
Abstract:
Disclosed is an optical compensation system comprising a user terminal device, and a display device for obtaining luminance data and color coordinates data by the use of user terminal device, and generating compensation data for compensating a deterioration of an organic light emitting diode based on obtained luminance data and color coordinates data and storing the compensation data, whereby it enables an optical compensation even after shipment of products, and it provides high-definition viewing quality to a user for a long time.
Abstract:
A wearable or attachable device comprising a UV sensor configured to provide user-specific burn rate times providing an indication to the user when they are exposing themselves to harmful levels of UV radiation.
Abstract:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The system can generate extrapolated UV intensity data based on measured UV intensity data to correct unreliable UV measurement due to inconsistent irradiation of UV light. The UV dosimetry system integrates the extrapolated UV intensity data over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
Abstract:
An electronic device includes a housing and one or more processors. At least one proximity sensor component is operable with the one or more processors and includes an infrared signal receiver to receive an infrared emission from an object external to the housing. At least one proximity detector component is also operable with the one or more processors and includes a signal emitter and corresponding signal receiver. The one or more processors can actuate the at least one proximity detector component when the at least one proximity sensor component receives the infrared emission from the object.