Abstract:
A semiconductor memory device includes a controller, a plurality of substrates, and a plurality of stacked memories that are spaced apart and sequence on each of the substrates. Each of the stacked memories includes an interface chip that is connected to the respective substrate and a plurality of memory chips that are stacked on the interface chip. The controller is configured to control the stacked memories. The interface chips are configured to forward a command signal from the controller through each interface chip in the sequence of stacked memories that is intervening between the controller and a selected stacked memory to which the command signal is directed. The interface chips may forward the command signal from one end of the sequence of the stacked memories on one of the substrates to the selected stacked memory, and forward a response signal from the selected stacked memory through the remaining stacked memories in the sequence on the substrate back to the controller or through the same sequence of stacked memories that was taken by the command signal.
Abstract:
A display apparatus having a display. The display apparatus includes a video signal processor having a processor to process an input video signal and a picture quality improving part to improve picture quality of the processed video signal. The video signal processor processes the video signal through a path that includes a signal processing path to selectively bypass the picture quality improving part. The display apparatus further includes a selection input part through which the user selects a bypass mode corresponding to the signal processing path. Finally, the display apparatus has a controller controlling the video signal processor to output the video signal processed through the processor to the display after bypassing the picture quality improving part when the user selects the bypass mode through the selection input part. Thus, the picture quality improving function may be omitted to thereby reduce signal processing time.
Abstract:
A semiconductor memory device utilizing a data coding method in an initial operation. The device includes a plurality of counters that count the number of data bits and flag information data bits. A data coding unit selectively applies a first and second operation mode. The first operation mode codes the data of the first through nth data groups such that the counted number of data bits in a first logic state is minimized. The second operation mode codes the data of the first through nth data groups such that the difference between the number of data bits and flag information bits in the first and second logic state are minimized. This prevents the initial logic state of data from being changed due to a voltage drop in the initial operation of the device.
Abstract:
A memory cell array with open bit line structure includes a first sub memory cell array, a second sub memory cell array, a sense-amplifier/precharge circuit, first capacitors and second capacitors. The first sub memory cell array is activated in response to a first word line enable signal, and the second sub memory cell array is activated in response to a second word line enable signal. The sense-amplifier/precharge circuit is connected to the first sub memory cell array through first bit lines and to the second sub memory cell array through second bit lines, and the sense-amplifier/precharge circuit precharges the first bit lines and the second bit lines and amplifies data provided from the first sub memory cell array and the second sub memory cell array.
Abstract:
An internal voltage generating circuit is provided. The internal voltage generating circuit of a semiconductor device includes a control signal generating circuit for generating a control signal according to a number of data bits, a comparator for comparing a reference voltage to an internal voltage to generate a driving signal when the control signal is inactivated, a driving signal control circuit for inactivating the driving signal when the control signal is activated, and an internal voltage driving circuit for receiving an external power voltage and generating the internal voltage in response to the driving signal. Therefore, an internal voltage can be turned to a reference voltage level or to an external power voltage level according to the number of data input and/or output bits of a semiconductor device, and even when the number of data input and/or output bits is increased, a data access speed can be improved.
Abstract:
In a communication system, data is selectively transmitted using single-ended or differential signaling. The data is transmitted in relation to a plurality of clock signals having different relative phases. When the data is transmitted using single-ended signaling, data on adjacent signal lines undergo logic transitions at different times in relation to the plurality of clock signals.
Abstract:
A circuit measuring the operating speed of a semiconductor memory chip in relation to a defined asynchronous access time is disclosed. The circuit includes a test signal path extending between a test input pad and a test output pad and is formed by a plurality of test signal path segments and at least one delay element associated with at least one of the plurality of test signal path segments, such that a delay time for a test signal communicated through the test signal path is indicative of the actual asynchronous access time for the semiconductor memory chip. Each one of the plurality of test signal path segments is either an interior test signal path segment or an exterior test signal path segment.
Abstract:
A semiconductor memory device may include a memory cell array, a bit line sense amplifier, a sub word line driver, and an electrode. The memory cell array may include a sub memory cell array connected between sub word lines and bit line pairs and having memory cells which are selected in response to a signal transmitted to the sub word lines and column selecting signal lines. The bit line sense amplifier may be configures to sense and amplify data of the bit line pairs. The sub word line driver may be configured to combine signals transmitted from word selecting signal lines and signals transmitted from main word lines to select the sub word lines. Moreover, the memory cell array may be configured to transmit data between the bit line pairs and local data line pairs and to transmit data between the local data line pairs and global data line pairs. The electrode may be configured to cover the whole memory cell array and to apply a voltage needed for the memory cells. The local data line pairs may be arranged on a first layer above the electrode in the same direction as the sub word line. The column selecting signal lines and the global data line pairs may be arranged on a second layer above the electrode in the same direction as the bit line. The word selecting signal lines and the main word lines may be arranged on a third layer above the electrode in the same direction as the sub word line. Related methods of signal line arrangement are also discussed.
Abstract:
A memory module, including a plurality of semiconductor memory devices for writing and reading m-bit parallel data; and a buffer for converting n-bit serial data into the m-bit parallel data to output to the plurality of semiconductor memory devices, converting the m-bit parallel data into the n-bit serial data to output to a first external portion during a normal operation, buffering 2n-bit parallel data to output to the plurality of semiconductor memory devices, and buffering the m-bit parallel data to output to a second external portion during a test operation.
Abstract:
A semiconductor memory device comprising control pads and input/output I/O pads capable of reducing the data path for reading and writing data in a cell array, and a method for driving the semiconductor memory device are included. The semiconductor memory device comprises a plurality of memory banks arranged at a cell region of a memory chip, and a plurality of control pads and a plurality of I/O pads, separately arranged from each other at the memory chip, for reading/writing data from/in the memory banks, wherein the plurality of control pads and I/O pads are dispersed at the peripheral region between adjacent memory banks and at the outer portions of the memory banks.