Abstract:
Systems and methods are provided for processing a payload portion of a received signal in a single carrier mode or a multiple carrier mode based on a portion of the received signal. A single carrier signaling portion is received at a first rate, and whether the payload portion of the signal is a single carrier signal or a multiple carrier signal is detected from the received single carrier signaling portion. The payload portion of the received signal is received at the first rate and demodulated in a single carrier mode if the detecting determines that the payload portion of the received signal is a single carrier signal, and the payload portion of the received signal is demodulated in a multiple carrier mode if the detecting determines that the payload portion of the received signal is a multiple carrier signal.
Abstract:
Methods, systems, and apparatus are described for processing a first field of a preamble of a data unit received by a communication device, the preamble including a second field that follows the first field in time. The embodiments described further include determining an estimated start of the second field of the preamble based on the processing of the first field, processing the second field of the preamble based on the estimated start of the second field, and determining an estimated time of arrival of the data unit at the communication device based on the processing of the second field of the preamble.
Abstract:
In a method for generating steering matrices for beamforming, one or more subsets of one or more maximum transmit steering matrices are selected, where the maximum transmit steering matrices correspond to a maximum number of spatial streams able to be transmitted from a transmitter to a receiver. The subsets correspond to an actual number of spatial streams to be transmitted, and the subsets are applied to spatial streams to be transmitted. In an apparatus for generating steering matrices, a steering matrix calculator is configured to determine, from maximum transmit steering matrices, a plurality of steering coefficients corresponding to an actual number of spatial streams.
Abstract:
Cophasing angles for a plurality of antennas are received from a hardware device by one or more processors separate from the hardware device. When steering vector feedback is to be transmitted, the one or more processors generate the steering vector feedback based on the cophasing angles. When explicit channel state information (CSI) feedback is to be transmitted, the one or more processors generate the explicit CSI feedback using the cophasing angles.
Abstract:
A method of antenna selection, in a MIMO system in which a transmitter having a first plurality of RF chains communicates with a receiver having a second plurality of RF chains, includes transmitting consecutive sounding packets produced by the first plurality of RF chains. The consecutive sounding packets each include a training symbol, and collectively sound a full-size channel for the MIMO system. The method also includes receiving channel state information for each of a plurality of scaled sub-channel estimates determined at the receiver. The channel state information includes at least one of respective gain factors that were applied to the consecutive sounding packets received at the receiver and respective scaling factors that were applied to sub-channel estimates determined at the receiver. The method also includes adjusting power levels applied to the first plurality of RF chains in response to receiving the channel state information.
Abstract:
A communication device generates a legacy portion of a physical layer (PHY) preamble of a PHY data unit. The legacy portion includes a plurality of legacy training fields and a legacy signal field that indicates a duration of the PHY data unit. The communication device generates a non-legacy portion of the PHY preamble to include a multi-bit signal field header to indicate a packet type of the PHY data unit from among a plurality of packet types defined by a wireless communication protocol, the plurality of packet types corresponding to a plurality of non-legacy signal field formats. The communication device generates a non-legacy portion of the PHY preamble to also include a non-legacy signal field having a field format i) selected from the plurality of non-legacy signal field formats and ii) consistent with the packet type indicated by the multi-bit signal field header.
Abstract:
Systems and methods are provided for introducing time diversity in a transmitter. The systems and methods may include receiving, at the transmitter, a request from a receiver to retransmit data. The systems and methods may further include receiving an input of data corresponding to the data requested for retransmission at a first transmitter block. The systems and methods may further include operating on the signals using the first transmitter block in at least one of a first mode and a second mode, such that an output of signals from the first transmitter block is dependent on a time-varying function and corresponds to the data requested by the receiver for retransmission.
Abstract:
In a wireless communication network that operates according to a communication protocol that permits transmissions via multiple channels corresponding to multiple different frequency bandwidths, a communication device receives a packet via a first communication channel that spans a first frequency bandwidth. The communication device determines a second communication channel for transmitting an acknowledgment packet, the second communication channel spanning a second frequency bandwidth that is less than the first frequency bandwidth, the acknowledgment packet responsive to receiving the packet. The communication device transmits the acknowledgment packet via the second communication channel.
Abstract:
A method, performed by a first communication device, for transmitting a wireless local area network (WLAN) packet to a WLAN network interface device of a second communication device is described. The second communication device includes a separate wakeup radio (WUR) coupled to the WLAN network interface device. The WLAN packet is generated at the first communication device to include a WUR identifier associated with a neighbor communication device. The WUR identifier is usable by the WUR of the second communication device to identify WUR packets transmitted by the neighbor communication device. The neighbor communication device is different from the first communication device. The WLAN packet is transmitted by the first communication device to the WLAN network interface device of the second communication device.
Abstract:
The present disclosure includes systems and techniques relating to an integer non-uniform constellation (NUC) high-order M-QAM. In some implementations, M is no less than 1024. Each of M constellation points of the integer NUC M-QAM has respective integer real and imaginary coordinates. A bit pattern is received and mapped to integer real and imaginary coordinates of one of the M constellation points according to a mapping rule of the integer NUC M-QAM. A transmission signal is modulated in accordance with the integer real and imaginary coordinates of the one of the M constellation points of the integer NUC M-QAM.