Abstract:
A system to control access to a nonvolatile memory. The system includes an embedded controller, and a nonvolatile memory including a password. The embedded controller and the nonvolatile memory may be in communication with one another. The system further includes a lock register receiving and storing the password from the nonvolatile memory, and a key register receiving a key from the embedded controller and holding the key for one machine cycle. Further, the system includes a comparator connected between the lock register and the key register. The comparator compares the password received from the lock register and the key received from the key register. Output from the comparator is provided to an access filter connected between the embedded controller and the nonvolatile memory. Based on the comparator output, the access filter may grant or block access to the nonvolatile memory.
Abstract:
A method and system for detecting a charging current supplied to a portable device through a USB charger. The method includes the steps of connecting a charging circuit to a portable device, allowing the portable device to draw charging current from the charging circuit, measuring the current drawn from the charging circuit, comparing the measured current with a threshold value, making one or more system level decisions regarding charging of the portable device if the detected charging current is below the threshold current.
Abstract:
A system and method for efficient input/output (I/O) port overvoltage protection of a high-speed port. An interfacing system for connecting peripheral devices to a computing system comprises ports for conveying serial communications bi-directional signals and an overvoltage protection circuit. The protection circuit prevents an overvoltage condition on one port in response to an overvoltage event on a corresponding second port. In one embodiment, the interfacing system connects USB peripheral devices to an automotive infotainment system comprising an automotive battery potiential greater than a USB power supply. In addition, the overvoltage protection circuit is able to transmit signals between the two ports without signal attenuation defined by an industry standard specification such as Universal Serial Bus (USB) Implementers Forum (IF) eye pattern diagram test. The overvoltage protection circuit is configured to have a small footprint, and, therefore, does not utilize a power reference and comparator circuit.
Abstract:
A USB-to-SDIO bridge (UTSB) to efficiently transmit SD/SDIO commands in USB packets. The UTSB may allow the majority of the device drivers for a given SD/SDIO device to remain intact, requiring changes only in the lowest hardware adaptation layer to put a USB wrapper around native SD commands. These commands may be sent over USB-to-SD card reader devices that may include various embodiments of a UTSB, where they may be unwrapped and transmitted to the SD port as if the port were native to the host controller. Additionally, the SD/SDIO commands may be packaged into groups of commands, or transactions, to optimize performance. The host driver may instruct the UTSB bridge device to repeatedly read data from the SDIO device until a communications FIFO on the device is empty (corresponding to a termination condition), and return the collected data to the host.
Abstract:
A control method for a sensor-less, brushless, three-phase DC motor. The stator coil in the electromagnets inside the motor may be used as the inductive element through which a voltage regulator can regulate the current as a means of regulating the output voltage. The value of the control signal provided to the drivers controlling power to the coils may be calculated based on at least the rail voltage, as measured in real time. This allows for a wide variation of input voltages, while maintaining a relatively constant output power to the motor. In general, by taking into account the value of the rail voltage when determining the final value of the control signal that is applied to the stator coils, the maximum current through the stator coils may be scaled to the same magnitude current that would be expected to flow through the coils if the rail voltage were the rated (nominal) fan/motor voltage, even when the actual rail voltage is different, e.g. higher than the rated fan/motor voltage.
Abstract:
A driver circuit, that provides slew rate control of its output voltage, including a current generator, an output transistor, and optionally, a capacitor. The current generator has an input port, an output port and reference port. The output port couples to the gate of the output transistor. The capacitor couples between the gate and drain of the output transistor. The current generator controls a current IS flowing through the output port based on an input voltage at the input port. The current generator limits the absolute value of the current IS to be less than or equal to a maximum determined by a reference current Iref provided at the reference port. Modifications may be made to the driver circuit to limit the output current (e.g., as a function of the output voltage) and to make the slew rate limit independent of the gate-drain capacitance of the output transistor.
Abstract:
A control method for a sensor-less, brushless, three-phase DC motor. The effects of commutation on the motor may be minimized using a sinusoidal current drive on each electromagnet. The “off” times and/or the “on” times of the drive transistors controlling the electromagnets in a full “H-bridge” configuration drive scheme may be delayed. By overlapping the drive signals to the electromagnets with respect to a commutation command, the effects of switching between electromagnets may be minimized. In addition, the “on” and “off” times may also be adjusted during the overlapping to further ensure that the coils continuously conduct current, and that the current does not change direction during the switching. The delays, and hence the overlap times of the coil drive signals may be dynamically controlled, for example by using digital timers, making the response predictable and easily controlled. The present position of the rotor in the motor may be determined using Hall sensors configured in the motor, or it may be determined using the un-energized electromagnets in a motor without Hall sensors.
Abstract:
A system for high-speed data transfer within a portable device, such as, cell phone or a set-top box, which includes a memory medium and a processor. The system includes a first port for coupling to the processor, and a second port for coupling to the memory medium. Further, the system includes an embedded Universal Serial Bus (USB) host configured for receiving data transfer commands from the processor, and transferring data at high speed between a USB device on the processor and the memory medium. Moreover, a data path is provided between the embedded USB host and the first port.
Abstract:
Embodiments of the present disclosure provide a method and system for an auto-ranging analog-to-digital converter (ADC) for dynamically scaling inputs to an ADC. The auto-ranging ADC includes a dynamically configurable transistor arrangement for delivering a load current and a replica device for replicating the load current. A current sense resistor generates a replicated load voltage based on the replicated current. The ADC generates a digital value based on the replicated load voltage. The auto-ranging ADC also includes an auto-ranging controller for dynamically configuring the transistor arrangement based on the digital value to scale the inputs to the ADC.
Abstract:
System and method for configuring a portable device. The portable device includes a serial bus hub, one or more processors coupled to the serial bus hub via a serial bus, and a flash memory coupled to the serial bus hub via the serial bus. A degraded signal is received to a serial bus hub included in the portable device via a serial bus, where the degraded signal includes code to be written to the flash memory to initialize or update firmware for the portable device. The serial bus hub restores the degraded signal, thereby generating a restored signal, and sends the restored signal to at least one of the one or more processors to initialize or update the firmware in the flash memory for the portable device.