Abstract:
A display panel includes a display area, a peripheral area which includes a first peripheral area, and a second peripheral area opposite to the first peripheral area, a plurality of pixels in the display area, a plurality of data lines, a first gate line, a second gate line, a first gate driving circuit and a second gate driving circuit. Each data line corresponds to two pixel columns. The first gate line is at a first side of a pixel row. The second gate line is at a second side of the pixel row. The first gate driving circuit is in the first peripheral area and includes a first stage which provides a gate signal to the first gate line. The second gate driving circuit is in a second peripheral area of the display area and includes a second stage which provides a gate signal to the second gate line.
Abstract:
There are provided an image recording system for a vehicle and a reflection unit thereof. The image recording system includes a vehicle in which a storage space is provided, a camera that is installed in the storage space, and a reflection unit that is installed on a window or a ceiling of the vehicle to reflect image information from a forward or rearward direction of the vehicle into the camera.
Abstract:
A touchscreen display substrate includes; a plurality of pixel parts including a plurality of first pixel rows arranged in a first direction, and a plurality of pixel columns arranged in a second direction substantially perpendicular to the first direction, wherein each of the plurality of pixel parts includes a pixel electrode, and a plurality of sensing parts which sense a touch state, the sensing parts being disposed in an area corresponding to the plurality of pixel parts, and being sequentially arranged in the first direction between adjacent pixel parts of first plurality of pixel columns.
Abstract:
In a gate drive circuit including stages which are cascaded and which output gate signals each of the stages includes a first node, an output part, a first holding part and a second holding part. A voltage of the first node is converted to a high voltage in response to one of a vertical start signal and a carry signal of one of previous stages. The output part outputs a first clock signal as a gate signal through an output terminal in response to the high voltage of the first node. The first holding part applies a first low voltage to the output terminal, in response to a gate signal output from at least one of following stages. The second holding part applies a second low voltage, which is less than the first low voltage, to the first node in response to a gate signal output from at least one stage among following stages.
Abstract:
Gallium nitride (GaN) based semiconductor devices and methods of manufacturing the same. The GaN-based semiconductor device may include a heat dissipation substrate (that is, a thermal conductive substrate); a GaN-based multi-layer arranged on the heat dissipation substrate and having N-face polarity; and a heterostructure field effect transistor (HFET) or a Schottky electrode arranged on the GaN-based multi-layer. The HFET device may include a gate having a double recess structure. While such a GaN-based semiconductor device is being manufactured, a wafer bonding process and a laser lift-off process may be used.
Abstract:
The present invention relates to a method of manufacturing a vertically-structured GaN-based light emitting diode. The method of manufacturing a vertically-structured GaN-based light emitting diode includes forming a GaN layer on a substrate; patterning the compound layer in a predetermined shape; forming an n-type GaN layer on the patterned compound layer through the epitaxial lateral over-growth process and sequentially forming an active layer and a p-type GaN layer on the n-type GaN layer; forming a structure supporting layer on the p-type GaN layer; sequentially removing the substrate and the GaN layer formed on the substrate after forming the structure supporting layer; removing the patterned compound layer exposed after removing the GaN layer so as to form an n-type GaN layer patterned in a concave shape; and forming an n-type electrode on the n-type GaN layer patterned in a concave shape.
Abstract:
A method of driving a display panel includes generating a gate on voltage, generating first and second gate off voltages based on an external voltage in a first operating mode, and first and second gate off voltages based on the gate on voltage in a second operating mode, generating a clock signal based on the gate on voltage and the second gate off voltage and outputting a gate voltage generated based on the clock signal and the first and second gate off voltages to a gate line of the display panel.
Abstract:
A drive control system for preventing a sudden slowdown of driving speed to reduce the shock felt by a driver, when compound-operating two-way driving and a work device in an excavator.
Abstract:
The present invention relates to a pharmaceutical composition and health supplement for preventing or treating atopic dermatitis, the composition and supplement having as active ingredients extract of a galenical mixture including sophora root, licorice, lonicer aflower, Korean angelica root, Korean aralia root, saussurea root, seselos radix, zizyphus spinosi, Houttuynia cordata, forsythia fruit, lappa fruit, Epimedium koreanum Nakai, ginseng, lithospermum, oleoresin, cnidium, scorophulariae radix, and reynoutria, or lactobacillus fermentation of the galenical extract prepared by inoculating lactobacillus to the galenical extract and fermenting same. The galenical extract or the galenical extract fermentation of the present invention achieves reduced scratching, decreases clinical features of atopic symptoms such as erythema, itchiness and dry skin, edema and hematoma, erosion, and lichenification, and reduces IgE concentration in blood, which is related to exogenous atopic dermatitis, in laboratory animal models of atopic dermatitis, and is thereby, useful for preventing or treating atopic dermatitis.