Abstract:
An integrated circuit chip with reduced IR drop and improved chip performance is disclosed. The integrated circuit chip includes a semiconductor substrate having thereon a plurality of inter-metal dielectric (IMD) layers and a plurality of copper metal layers embedded in respective the plurality of IMD layers; a first passivation layer overlying the plurality of IMD layers and the plurality of copper metal layers; a first power/ground ring of a circuit block of the integrated circuit chip formed in a topmost layer of the plurality of copper metal layers; a second power/ground ring of the circuit block of the integrated circuit chip formed in an aluminum layer over the first passivation layer; and a second passivation layer covering the second power/ground ring and the first passivation layer.
Abstract:
A method for fast locating a decipherable pattern in an input image, which is characterized in utilizing an overly downscaled binary image to not only reduce computation time but also facilitate extraction of skeletons for fast and accurately locating pattern, is disclosed. First, a pre-process is applied to an input image to acquire a binary image downscaled n times, from which at least one skeleton corresponding to a decipherable pattern is extracted. Coordinate values of at least one pixel of each skeleton are respectively enlarged n1/2 times and used as the central points on the original image plane for establishing a plurality of detecting blocks with the identical size. Subsequently, a grading mechanism is employed to determine the corresponding detecting blocks of the decipherable pattern.
Abstract:
The present invention provides a compounds the formula (IV): and methods for producing an α-(phenoxy)phenylacetic acid compound of the formula: wherein R1 is a member selected from the group consisting of: each R2 is a member independently selected from the group consisting of (C1-C4)alkyl, halo, (C1-C4)haloalkyl, amino, (C1-C4)aminoalkyl, amido, (C1-C4)amidoalkyl, (C1-C4)sulfonylalkyl, (C1-C4)sulfamylalkyl, (C1-C4)alkoxy, (C1-C4)heteroalkyl, carboxy and nitro; the subscript n is 1 when R1 has the formula (a) or (b) and 2 when R1 has the formula (c) or (d); the subscript m is an integer of from 0 to 3; * indicates a carbon which is enriched in one stereoisomeric configuration; and the wavy line indicates the point of attachment of R1; and compounds.
Abstract:
A method of forming an electrode having an electrochemical catalyst layer is disclosed. The method includes etching a surface of a substrate, followed by immersing the substrate in a solution containing surfactants to form a conditioner layer on the surface of the substrate, and immersing the substrate in a solution containing polymer-capped noble metal nanoclusters dispersed therein to form a polymer-protected electrochemical catalyst layer on the conditioner layer.
Abstract:
A packaging structure with a box for containing at least a portable electronic device is provided. The box has plates, which are connected to one another and surrounded to form an opening for the portable electronic device passing through, and a lid selectively covering or exposing the opening. First solar cells each fastened on an inner surface of each plate in the box. At least a cable electrically connects the first solar cells and is operated for electrically connecting the portable electronic device.
Abstract:
Compounds, compositions, and methods relating to 5-ethyl-2-{4-[4-(4-tetrazol-1-yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1-yl}-pyrimidine or a pharmaceutically acceptable salt thereof are provided for the treatment of Type II diabetes and other diseases associated with poor glycemic control.
Abstract:
The present invention provides a methods and compounds for producing an enantiomerically enriched α-(phenoxy)phenylacetic acid compound of the formula: from a mixture of its enantiomers, where R1 is alkyl or haloalkyl and X is halide.
Abstract:
A carbon nanotube/polymer composite is described. The carbon nanotube/polymer composite includes at least one polymer material layer and at least one carbon nanotube/polymer composite layer. The carbon nanotube/polymer layer includes a polymer material and a plurality of carbon nanotubes embedded in the polymer material, wherein the carbon nanotube/polymer layer includes a top surface and a bottom surface opposite to the top surface, at least one of the top surface and bottom surface contacts with the adjacent polymer material layer, and the carbon nanotubes respectively contact at least one respective adjacent carbon nanotube to thereby yield a network of contacting carbon nanotubes.
Abstract:
This specification discloses a mask close-on image capturing device, which includes a mask with an opening, several light sources and an image capturing device installed inside the mask. Light emitted by the light sources emanates homogeneously from the opening of the mask. The lens of the image capturing device faces the opening of the mask, which is put close to an object. The homogeneous light shines on the object for the image capturing device to focus automatically and quickly capture a clear image. Therefore, the invention has the advantages of being easy and quick to operate and clear images.
Abstract:
The present invention is directed to certain novel triazole compounds represented by Formula I and pharmaceutically acceptable salts, solvates, hydrates, and prodrugs thereof. The present invention is also directed to methods of making and using such compounds and pharmaceutical compositions containing such compounds to treat or control a number of diseases mediated by PPAR such as glucose metabolism, lipid metabolism and insulin secretion, specifically Type 2 diabetes, hyperinsulemia, hyperlipidemia, hyperuricemia, hypercholesteremia, atherosclerosis, one or more risk factors for cardiovascular disease, Syndrome X, hypertriglyceridemia, hyperglycemia, obesity, and eating disorders.