Abstract:
Disclosed herein are a wavy fin, a heat exchanger having the same, an apparatus for manufacturing the same, a method of manufacturing the same, and a computer-readable recording medium storing the method. The wavy fin is configured such that top and bottom parts are alternately formed in a width direction while being connected by side parts, and the top, bottom, and side parts extend in a longitudinal direction so as to form a wave such that ridges and valleys are alternately repeated, and includes a front part in front of each ridge or valley of the wave in the longitudinal direction, and a rear part beyond the ridge or valley of the wave in the longitudinal direction. The front and rear parts are offset from each other in the width direction so as to be misaligned at the ridge or valley of the wave.
Abstract:
Disclosed are a wavy fin structure, in which a cross-cut having a designated length is formed at a designated position of a wavy fin, and a flat tube heat exchanger having the same. The cross-cut is formed around at least one valley or peak of the fin. One cross-cut is formed at a valley or a peak at the central portion of the fin or a plurality of cross-cuts is formed at designated periods in the length direction of the fin. Further, the cross-cut is formed at a position at the rear of the peak and the length of the cross-cuts is 1 5 C to 4 5 C . The wavy fin structure generates flow disturbance due to a wavy-type dynamic flow, thus improving heat transfer performance.
Abstract:
The present invention is directed to a system and method for providing vehicles with information about an event occurred on a road, capable of effectively providing information about an accident on a road to vehicles driving toward the region where the accident has occurred, even during hours or in regions in which vehicle traffic is low.
Abstract:
A facial identification method includes changing an image size for facial identification, converting the image of changed size to an LBP domain, and detecting a face through scanning across the converted image. At least one or more of steps of converting and scanning is executed by a plurality of processing units.
Abstract:
A phase shift circuit may include a ramp generation unit charging or discharging a capacitor connected to a switch device to generate a ramp signal, a reference signal generation unit generating a predetermined reference signal from the ramp signal, and a comparison unit comparing the ramp signal with the reference signal to generate a clock signal, wherein at least one of the reference signal generation unit and the comparison unit changes a negative or positive value of offset components included in the reference signal or the ramp signal within every operating period of the switch device.
Abstract:
An apparatus and method for correcting the ionospheric distortion of an SAR (Synthetic Aperture Radar) interferogram are disclosed herein. The apparatus includes a multiple aperture SAR interferometry (MAI) interferogram generation unit, a transformed MAI interferogram generation unit, an ionospheric distortion interferogram generation unit, and a corrected SAR interferogram acquisition unit. The multiple aperture SAR interferometry (MAI) interferogram generation unit generates a multiple aperture SAR interferometry (MAI) interferogram using an SAR interferogram. The transformed MAI interferogram generation unit generates a transformed MAI interferogram representative of the azimuth direction derivatives of ionospheric distortion phases using the phases of the MAI interferogram. The ionospheric distortion interferogram generation unit generates an ionospheric distortion interferogram using the transformed MAI interferogram. The corrected SAR interferogram acquisition unit acquires a corrected SAR interferogram by eliminating the generated ionospheric distortion interferogram from the SAR interferogram.
Abstract:
Disclosed are a semiconductor device manufactured using a paper as a substrate and a method of manufacturing the same. According to an embodiment of the present invention, the semiconductor device is manufactured by using a paper including pulp as a raw material or paper as a substrate coated with a heat-resistant material such as silicon. According to the present invention, a metal wiring layer such as a gate electrode is formed on the paper substrate by using a vacuum deposition method, or the like and an insulating layer is stacked thereon.
Abstract:
The present invention relates to a PFC control circuit, an active PFC circuit, and a PFC control method. According to an embodiment of the present invention, a PFC control circuit including: an inductor current sensing unit for sensing an inductor current of a PFC circuit; an output voltage feedback unit for outputting a feedback output signal; a sensing and feedback signal application unit for outputting a sensing voltage signal during switching duty on of the PFC circuit and adding the feedback output signal to the sensing voltage signal to output the added signal during switching duty off of the PFC circuit; and a PFC control unit for generating a comparison signal and generating a duty control signal from the comparison signal and a first reference signal to make variations due to an internal offset be removed or reduced is provided.
Abstract:
There are provided a power supply apparatus switching a power input to a primary side to supply the power to a predetermined load connected to a secondary side electrically insulated from the primary side and a control circuit thereof, the control circuit generating a predetermined PWM signal to apply the generated PWM signal to a dimming switch connected to an end of the load and controlling a switching frequency of the primary side based on a control voltage generated according to a feedback signal depending on the power supplied to the load and the PWM signal, wherein a voltage variation amount of the control voltage may be constantly maintained regardless of a duty of the PWM signal.
Abstract:
Devices, methods, and techniques for frequency-dependent optical switching are provided. In one embodiment, a device includes a substrate, a first optical-field confining structure located on the substrate, a second optical-field confining structure located on the substrate, and a composite structure located between the first and second optical-field confining structures. The second optical-field confining structure may be spaced apart from the first optical-field confining structure. The composite structure may include an embedding structure with a surface to receive photons and multiple quantum structures located in the embedding structure.