Abstract:
Performing cell re-selection by a wireless user equipment (UE) device. A first cell on which to camp may be selected. The UE may camp on the first cell in an idle-mode. The UE may be configured to perform searches for neighboring cells according to an idle-mode timeline while camping on the first cell. The UE may transmit a connection request to the first cell in order to transition the UE from the idle-mode to a connected-mode via the first cell. One or more searches for neighboring cells may be performed according to a connected-mode timeline after transmitting the connection request, in response to transmitting the connection request. The one or more searches may be performed before the UE establishes the connected-mode with the first cell.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on channel conditions, DRX cycle length, and/or the requirements of CSF reporting for current DRX cycle. The proposed approach can allow for more efficient power consumption related to CSF reports in DRX scenarios where new CSF reports have little or no impact to throughput.
Abstract:
A wireless communication system is presented in which subframe-specific link adaptation is performed. A mobile device can transmit a signal that informs a base station whether a particular subframe was received successfully. Additionally the mobile device can calculate channel state information (CSI) for a subframe and report the CSI to a base station. The reported CSI may or may not include an indicator for informing the base station about from which type of subframe the CSI was derived. The base station can receive the signal, the CSI and/or the indicator. Based on what information the base station has received, it performs subframe-specific BLER filtering and subframe-specific link adaptation scheduling and MCS adjustments.
Abstract:
Enabling receive diversity based on detecting incorrect paging message length. A paging channel may be monitored. An indication of a paging message may be received on the paging channel. The paging message may include a message length field indicating a message length of the paging message. The message length field of the paging message may be received on the paging channel and decoded. It may be determined that the message length indicated in the message length field is incorrect. Receive diversity may be enabled for at least one subsequent paging occasion in response to determining that the message length indicated in the message length field is incorrect.
Abstract:
In order to facilitate communication in a dynamic cellular network, an accessibility issue in the dynamic cellular network may be detected. For example, if an electronic device is near the boundary between two adjacent cells in the dynamic cellular-telephone network, the signal power of signals from the adjacent cell may be higher than that of signals from the current servicing cell, which may offer an opportunity to improve communication performance. Thus, the accessibility issue may be detected if the difference is larger than a threshold value (such as 2-4 dB). In response to detecting the accessibility issue, a remedial action may be performed, such as repeating at least a portion of an acquisition process. In this way, the communication technique may improve the communication performance of the electronic device in the dynamic cellular network, thereby improving the user experience and customer satisfaction.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on channel conditions, DRX cycle length, and/or the requirements of CSF reporting for current DRX cycle. The proposed approach can allow for more efficient power consumption related to CSF reports in DRX scenarios where new CSF reports have little or no impact to throughput.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods for configuring a power savings signal in fifth generation (5G) new radio (NR) networks. The wireless device may transmit, to a base station within a network, power savings requirements and receiving, from the base station, a configuration of a power saving signal, where the configuration indicates one or more functionalities of the power saving signal. The wireless device may periodically receive, from the base station, the power saving signal and interpret the power saving signal based on the configuration. The configuration of the power saving signal may be received via radio resource control signaling.
Abstract:
A downlink control information (DCI), such as a blanking DCI (bDCI) message may be transmitted by a base station (e.g., eNB) and received by a mobile device (e.g., UE). The bDCI may indicate that the eNB will not transmit a subsequent DCI to the UE for a duration of time. The UE may be in continuous reception mode or connected discontinuous reception (C-DRX) mode. The UE may therefore determine to enter a sleep state or take other action. The bDCI may specify an explicit blanking duration, or an index indicating a blanking duration from a lookup table, and/or the blanking duration (and/or a blanking duration offset value) may be determined in advance, e.g., semi-statically. When the UE is in C-DRX mode, the UE may be configured such that either the sleep/wake period of the C-DRX mode or the blanking period of the bDCI may take precedence over the other.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods for configuring a power savings signal in fifth generation (5G) new radio (NR) networks. The wireless device may transmit, to a base station within a network, power savings requirements and receiving, from the base station, a configuration of a power saving signal, where the configuration indicates one or more functionalities of the power saving signal. The wireless device may periodically receive, from the base station, the power saving signal and interpret the power saving signal based on the configuration. The configuration of the power saving signal may be received via radio resource control signaling.