Abstract:
A casting tool for a direct squeeze casting process that includes a cast mold tool with a contoured internal passage for better die thermal management. This enables the use of a grey cast iron mold material. A durable mold surface may also be formed through a nodular cast iron reaction with a Magnesium addition in either sand core or sand core coating.
Abstract:
A multiple step method increases net tensile strengths of high pressure die cast (HPDC) aluminum components through an alloy- and process-dependent thermal treatment. The highest temperature feasible for solution treatment of an HPDC casting is determined by computational thermodynamics, kinetics and the gas laws based on the alloy composition and gas pressure in the finally solidified parts. Determining the maximum solution temperature involves mapping pressure in the bubbles of solidified material to avoid the formation of blisters by surface adjacent bubbles in the casting. To reduce residual tensile stress, the HPDC parts are air cooled after the solution treatment. Finally, a specific, multiple temperature aging cycle is utilized to improve the aging response of air cooled HPDC parts and increase net tensile strength.
Abstract:
A method of in situ formation of an aluminum carbon nanotube composite material and an induction motor component produced with such composite. The method includes forming an aluminum-based matrix by mixing a catalyst precursor with an aluminum powder such that a colloidal compound is formed that is subsequently sintered to leave a catalytically-active material formed on the surface of the aluminum powder. A carbon-containing gas is introduced to the composite catalyst that includes aluminum and the catalytic metal so that carbon nanotube reinforcements are grown on the aluminum-based matrix with the assistance of the catalytically-active metal. Additional mechanical processing steps may also include pressurizing, sintering and cold-rolling the aluminum carbon nanotube composite material.
Abstract:
A casting system includes a pour cup, a plurality of runners that receive molten metal from the pouring cup, a top mold and a bottom mold that receive the molten metal from the plurality of runners, and a plurality of slides positioned within the top mold and the bottom mold. The positioning of the plurality of slides applies direct pressure on the molten metal in the top mold and the bottom mold to form a cast structural component.
Abstract:
Aluminum alloys having improved properties are provided. The alloy includes about 8 to about 12 weight percent silicon, about 0.5 to about 1.5 weight percent copper, about 0.2 to about 0.4 weight percent magnesium, 0 to about 0.5 weight percent iron, about 0.3 to about 0.6 weight percent manganese, 0 to about 1.5 weight percent nickel, and 0 to about 0.5 weight percent zinc. Aluminum may be present in an amount between about 80 and 91 weight percent. The alloy may include about 0.1 to about 0.5 weight percent each of trace elements such as titanium, vanadium, and/or zirconium, and up to about 0.25 weight percent of all other trace elements. In addition, the alloy may contain about 0.03 to about 0.1 weight percent of strontium, sodium, and/or antimony, and up to 5 ppm phosphorus. Also disclosed is a high pressure die cast article, such as an engine block.
Abstract:
A method of improving riser feedability in semi-permanent mold casting is disclosed. The method includes providing a first receptacle fluidly connected to a mold cavity and providing a second receptacle fluidly connected to a riser. Further, the method includes delivering molten metal to the first receptacle and conveying the molten metal into the mold cavity through a sprue. Delivery of molten metal to the first receptacle is terminated when the mold cavity reaches a predetermined fill level delivery of molten metal to the second receptacle is initiated. In certain embodiments, the first receptacle and the second receptacle are combined into a single receptacle and the sprue is connected to the mold cavity through a lower runner and is connected to the riser through an upper runner.
Abstract:
Copper-free aluminum alloys suitable for high pressure die casting and capable of age-hardening under elevated temperatures are provided. The allow includes about 9.5-13 wt % silicon, about 0.2 to 0.6 wt % Magnesium, about 0.1 to 2 wt % iron, about 0.1 to 2 wt % manganese, about 0.1 to 1 wt % nickel, about 0.5 to 3 wt % zinc, and 0 to 0.1 wt % strontium, with a balance of aluminum. Methods for making high pressure die castings and castings manufactured from the alloy are also provided.
Abstract:
A method to automatically quantify dendrite arm spacing in dendritic microstructures. Once a location of interest in a cast material specimen has been identified, the information contained in it is automatically analyzed to quantify dendrite cell size information that is subsequently converted into a quantified dendrite arm spacing through an empirical relationship or a theoretical relationship. In one form, the relationship between DCS and DAS is such that the DAS in dendritic structure of cast aluminum alloys may be automatically determined from the measurement of one or more of dendrite cell size and the actual volume fraction of the eutectic phases in the local casting microstructure. Non-equilibrium conditions may be accounted for in situations where a theoretical volume fraction of a eutectic phase of the alloy in equilibrium condition is appropriately modified. Thus, in situations where equilibrium conditions—such as those where the casting is cooled very slowly during solidification—does not apply (such as during rapid cooling and consequent solidification), the eutectic measured in the non-equilibrium condition, which can be smaller than the theoretical value in equilibrium, can be accounted for.
Abstract:
A method, device and article of manufacture for determining properties in a high pressure die cast component. Upon receipt of geometric information that corresponds to a location of interest within the component, a ray-triangle intersection relationship is used to calculate a wall thickness of the location of interest; this relationship is simplified by being used in conjunction with an octree-based relationship. One or more calculations are performed to determine a skin thickness based on the calculated wall thickness, and the skin thickness calculations are based on at least one of a logarithmic relationship, a polynomial relationship and a power law relationship. Changes in component shape or size may be taken into consideration to adjust the remaining skin layer thickness, such as that when the as-cast component is exposed to subsequent machining or related post-casting operations. From this, the properties are mapped to allow node-by-node variations in mechanical properties based on whether the node resides in the component skin region or core region.
Abstract:
A method of in situ formation of an aluminum carbon nanotube composite material and an induction motor component produced with such composite. The method includes forming an aluminum-based matrix by mixing a catalyst precursor with an aluminum powder such that a colloidal compound is formed that is subsequently sintered to leave a catalytically-active material formed on the surface of the aluminum powder. A carbon-containing gas is introduced to the composite catalyst that includes aluminum and the catalytic metal so that carbon nanotube reinforcements are grown on the aluminum-based matrix with the assistance of the catalytically-active metal. Additional mechanical processing steps may also include pressurizing, sintering and cold-rolling the aluminum carbon nanotube composite material.