Abstract:
A dual gate power switch comprised of a vertical arrangement of a normally off SIT (static induction transistor) in series with a normally on SIT in a monolithic semiconductor structure. The structure includes a first pillar having at the base thereof laterally extending shoulder portions having sections of a first gate for controlling the normally off SIT. The structure includes a second pillar, of a width greater than the first pillar and which also has laterally extending shoulder portions having sections of a second gate for controlling the normally on SIT. Contacts are provided for SIT operation.
Abstract:
A technique for reducing power requirements in a communication transponder by converting signals in multiple uplink channels carried in frequency division multiplexed (FDM) form on multiple uplink beams, to a lesser number of downlink beams that operate in time division multiplexing (TDM) but at a bandwidth different from and preferably greater than the bandwidth of the uplink channels. Because the TDM downlinks can utilize amplifiers operating at or near peak power, whereas conventional FDM downlinks must operate with amplifiers backed off to minimize intermodulation products, use of the TDM downlinks effects significant power savings.
Abstract:
Formation of a regrowth layer of a Group III–V semiconductor material is facilitated by prior formation of an intermediate layer, selected primarily for its smooth morphology properties. The intermediate layer is formed over an underlying substrate and over a dielectric layer formed over portions of the substrate. The intermediate layer maintains the monocrystalline properties of the underlying substrate in regions other than those covered by the dielectric layer, and improves the electrical and morphology properties of the regrowth layer formed over the intermediate layer.
Abstract:
An apparatus in one example comprises a wafer portion that comprises a conduction layer. Upon exposure of the conduction layer during a etch of the wafer portion, the conduction layer serves to dissipate a portion of a charge buildup on the wafer portion during an etch of the wafer portion.
Abstract:
A double heterojunction bipolar transistor structure having desirable properties of a low base-emitter turn-on voltage and no electron blocking discontinuities in the base-collector junction. These properties are achieved by selecting base, emitter and collector materials to provide a bandgap profile that exhibits abrupt transitions at the heterojunctions, such that both abrupt transitions are due to transitions in the valence band edge of the bandgap, but not in the conductive band edge of the bandgap.
Abstract:
A high resolution pen-sized projector for controlling the position and size of an image generated by a closed loop control system consists of four major system components including: a virtual VGA display located inside of a XGA display, a position acquisition system, a displacement compensating control system to determine correct position of the VGA display inside of the XGA display, and a dark display area of the background portion of the XGA display.
Abstract:
A wideband RF-to-IF frequency converter providing multiple use of frequency conversion components for many different types of RF input signals. In specific examples, many different types of signals for communication, navigation, and for interrogation are processed through at least partly common frequency-conversion channels. Such RF input signals in the range from approximately 2 MHz to 2,000 MHz are converted to output IF frequencies, such as 1 MHz and 30 MHz, for further processing in the common receiver. Some narrow band signals, after conversion to IF, are subjected to off-center filtering in relatively broadband IF filters. Input RF filters are not used. Among several frequency conversion stages, only one of the local oscillator signals is tunable; but it is made tunable in relatively small, precise steps by using a double phase-locked loop arrangement in the frequency synthesizer.
Abstract:
A method of making a semiconductor structure for use in a static induction transistor. Three layers of a SiC material are on a substrate with the top layer covered with a thick oxide. A mask having a plurality of strips is deposited on the top of the oxide to protect the area underneath it, and an etch removes the oxide, the third layer and a small amount of the second layer, leaving a plurality of pillars. An oxidation step grows an oxide skirt around the base of each pillar and consumes the edge portions of the third layer under the oxide to form a source. An ion implantation forms gate regions between the skirts. At the same time, a plurality of guard rings is formed. Removal of all oxide results in a semiconductor structure to which source, gate and drain connections may be made to form a static induction transistor. A greater separation between a source and gate is obtained by placing a spacer layer on the sidewalls of the pillars, either before or after formation of the skirt.