Abstract:
Apparatus and method for establishing a level plane and with respect to the level plane, vertically aligning an acceleration sensitive axis of a gravity measurement device (10). The gravity measurement device includes an accelerometer (68), which is rotatably mounted on a gimbal shaft (62) within a gimbal frame (54). The gimbal frame is also rotatable about a longitudinal axis that is preferably oriented at a right angle to the longitudinal axis of the gimbal shaft. A stepping motor (20) is connected through an antibacklash gear (30), an idler gear (32) and an antibacklash gear (48) to a drive shaft (50). Rotation of this drive shaft causes the accelerometer to rotate about the gimbal shaft. In a similar fashion, a stepping motor (22) is drivingly connected to a drive shaft (56), used to rotate the gimbal frame. A control (140) selectively energizes the stepping motors, so that the acceleration sensitive axis of the accelerometer is rotated until an output signal from the acceleometer indicates that the acceleration of gravity is zero and thus that the sensitive axis is level at two cross axis positions, thereby determining a level reference plane. The control then causes the accelerometer to be rotated 90.degree. relative to the reference plane, so that the acceleration sensitive axis is vertically aligned, thereby enabling the accelerometer to measure the local acceleration of gravity with minimal error due to vertical alignment.
Abstract:
A method and apparatus for detecting amplitude compression in a guidance system utilizes a transmitting system that transmits two pulses having a predetermined amplitude differential therebetween on each of a plurality of directional beams. The amplitudes of the pulses received from an individual one of the beams are compared, and if the amplitude differential between the received pulses is different than the predetermined amplitude differential of the transmitted pulses, a signal indicative of receiver compression is generated.
Abstract:
A technique is described for tailoring the configuration of electrodes on a piezoelectric beam such that the tendency of the beam to vibrate in a predetermined flexure mode is enhanced. The mode has a predetermined longitudinal strain versus longitudinal position profile. At least two electrodes are mounted on the beam, and the configuration of at least one electrode varies as a function of longitudinal position, such that when a voltage difference is applied between the electrodes, the longitudinal force produced by the electrodes, as a function of longitudinal position, approximates the longitudinal strain versus longitudinal position profile. The configuration may be varied by varying the width of the electrode or the position of the electrode on the underlying beam surface.
Abstract:
A compact, low g range accelerometer comprising a support (22), a proof mass (20), flexures (24, 26) for mounting the proof mass to the support, and a force sensing element (40). The proof mass has a single rotational degree of freedom about a hinge axis (H) perpendicular to the accelerometer's sensitive axis (S). The force sensing element is positioned along a line that is normal to the hinge axis and that lies in a plane that is normal to the hinge axis and that passes through the center of gravity (46) of the proof mass. The perpendicular distance between the hinge axis and the force sensing element is less than the distance between the hinge axis and the center of the proof mass. The force sensing element may be parallel to the pendulous axis, to produce an extremely compact accelerometer, or may be oriented at an acute angle with respect to the pendulous axis, such that the line along which the force sensing element is positioned passes through the center of percussion of the proof mass.
Abstract:
An apparatus for producing signals indicative of both a Coriolis rate and an acceleration along a preferred axis while decoupling extraneous vibration and motion that would introduce errors into the signals, and a driving mechanism for vibrating the apparatus at a dither frequency. The apparatus includes a parallelogram frame (50) including two accelerometer support surfaces (24, 26) on which are mounted two accelerometers (20 and 22) having their sensitive axes in parallel alignment. A driving mechanism (64) is connected to the parallelogram frame and is operative to drive the accelerometers at a desired frequency, causing them to vibrate back and forth in a direction substantially transverse to their sensitive axes. The driving mechanism includes a mounting plate (72) and a coil frame (66) on which are mounted two electromagnetic coils (70) having a "C" shaped core (80). The driving mechanism is mounted so that the core faces a pole piece (84) attached to the parallelogram frame and its moment of inertia is trimmed to equal that of the parallelogram frame. It is connected to the parallelogram by a link (88) and provides a reactionless driving force.
Abstract:
An aircraft ground proximity warning system having an excessive descent rate warning mode which generates a warning signal when the descent rate of the aircraft exceeds a predetermined limit for the particular altitude of the aircraft above ground. The warning system provides for three separate warnings. A SINK RATE advisory warning is generated for combinations of lesser descent rates and greater altitudes. A PULL UP warning is generated for higher descent rates at lower radio altitudes. After a predetermined time after the SINK RATE warning is generated a TERRAIN warning is provided to indicate to the pilot of the aircraft that an excessive sink rate condition exists and the aircraft is flying over undulating or mountainous terrain. Also disclosed is logic circuitry for detecting that the aircraft is flying over undulating terrain.
Abstract:
An aircraft ground proximity warning system is disclosed having an inadequate terrain clearance warning mode, wherein the criteria required to generate the warning is modified when the aircraft is flying over undulating or mountainous terrain. The system is responsive to signals representative of the radio altitude, the barometric altitude, the speed of the aircraft, the flap position and the landing gear position to provide warnings when the aircraft is operating below a predetermined altitude with either or both of the landing gear of the flaps not in a landing configuration. The warning system also provides a warning when the aircraft is traveling above a predetermined speed and below a predetermined altitude irrespective of the configuration of the landing gear or the flaps. Also disclosed is logic circuitry for detecting that the aircraft is flying over undulating or mountainous terrain and modifying the warning envelope during such condition to provide longer warning times.
Abstract:
An apparatus for producing signals indicative of both a Coriolis rate and an acceleration along a preferred axis while decoupling extraneous vibration and motion that would introduce errors into the signals, and a driving mechanism for vibrating the apparatus at a dither frequency. The apparatus includes a parallelogram frame (50) including two accelerometer support surfaces (24, 26) on which are mounted two accelerometers (20 and 22) having their sensitive axes in parallel alignment. The accelerometer support surfaces are connected to opposite ends of a flex member (52), which includes six flexures (32, 34, 36, 38, 40, 42) having parallel bending axes. Two of the flexures (34, 38) are disposed at opposite ends of one side of each flexure member, and have a "long" axis that is substantially parallel to the sensitive axes of the accelerometers and aligned with a line connecting their centers of percussion. The centers of mass of the accelerometers and their associated supporting surfaces are coincident with the centers of percussion, and are rigidly connected by the two flexures and by one side (30) of each flex member. This solid metal path between the centers of percussion minimizes common mode errors. A driving mechanism (64) is connected to the parallelogram frame and is operative to drive the accelerometers at a desired frequency, causing them to vibrate back and forth in a direction substantially transverse to their sensitive axes. The driving mechanism includes a mounting plate (72) and a coil frame (66) on which are mounted two electromagnetic coils (70) having a "C" shaped core (80). The driving mechanism is mounted so that the core faces a pole piece (84) attached to the parallelogram frame and its moment of inertia is trimmed to equal that of the parallelogram frame. It is connected to the parallelogram by a link (88) and provides a reactionless driving force.
Abstract:
A warning system for rotary wing aircraft compares the accumulated altitude loss after take-off of the aircraft with its altitude above ground, and generates a warning if the altitude loss is excessive for the altitude above ground at which the aircraft is flying. The position of the landing gear, the speed of the aircraft and its altitude enable the system only during the take-off and missed approach phases of operation in order to minimize nuisance warnings during other phases. The relationship between radio altitude and altitude loss required to generate a warning is optimized for rotary wing aircaft such as helicopters.
Abstract:
A crystal controlled oscillator in which changes in damping are compensated and a method for decoupling the output signal of such an oscillator from damping changes. The damping decoupled oscillator includes a quartz crystal (10), which produces a periodic signal, connected in series with a variable gain amplifier (18) and a variable phase shift circuit (22). Feedback from the output of the variable phase shift circuit is provided to sustain oscillation of the crystal. Unity gain in the loop is maintained by adjusting the gain of the variable gain amplifier in accordance with the DC value of the output signal, provided by a precision rectifier (34). As the DC value of the output signal changes due to changes in damping or energy loss of the crystal, an absolute value circuit (38) responds by providing a phase control signal for adjusting the phase of the periodic signal to compensate for changes in damping. The output signal of the oscillator is thus controlled at a constant amplitude, with substantially reduced frequency shift.