Abstract:
A shutting assembly for a magnetic resonance imaging device (MRD) bore aperture, comprising at least one first movable portion and at least one second portion affixed to the MRD, wherein the shutting assembly further comprising a normally closed or normally open sliding mechanism. The sliding mechanism couples at least one first moveable portion to at least one second portion affixed to the MRD, thereby enabling a reciprocal movement of at least one first moveable portion parallel to the MRD bore aperture in an upwards and downwards directions in respect to at least one second portion affixed to the MRD.
Abstract:
An MRI-based method for determining a velocity profile for a fluid flowing through a pipe, said method comprising: selecting a slice through which said fluid is flowing; selecting a pulse sequence; separating said pulse sequence into a preparation part and a readout part; applying said preparation part to said slice; waiting a predetermined time Rt; and, applying said readout part to said slice.
Abstract:
An encapsulatable life support mechanism (ELSM) for an analyzed animal, including: a cradle or bed adapted by means of size and shape to accommodate the animal; an anesthetization gas mask (AGM) characterized by a cup with conic cross section, comprising a plurality of apertures located at the outer circumference of the cup; a fluid supplying mechanism (FSM) in which the AGM is placed, the FSM is in a continuous fluid communication with (i) an anesthetization gas inlet positioned outside the ELSM and an outlet located within the ELSM; (ii) an air suction scavenging device positioned outside the ELSM and a mask and an air suction outlet located within the ELSM; and a plurality of (iii) air conditioning tubes; and an airtight shell enveloping the same. The airtight ELSM prevent leakage of anesthetization gas.
Abstract:
A radiofrequency (RF) shielding conduits that can be embedded within a doorframe and/or a door of a magnetic resonance imaging (MRI) room are disclosed. The RF shielding conduits can form, upon closing of door onto the doorframe, an RF shielding channel to enclose and/or allow passage of tubing of medical equipment extending from an interior of the MRI room to an environment that is external to the MRI room, while providing a RF shielding of the MRI room.
Abstract:
A rotatable protective cover functioning as a door, that both opens and closes off, an entrance opening of a patient bore in an MRI device is disclosed. The rotatable protective cover comprises a semi-permeable barrier material, MRI shielding, and physical shielding; and is at least partially transparent.
Abstract:
The present invention discloses methods, gantry, and room's infrastructure for maneuvering a portable open-bore magnetic resonance device with no fringing of its magnetic field (MRD) from at least one first location towards at least one static patient placed at at least one second remote location. The gantry comprises a transporting mechanism; and, an open-bore MRD, interconnected to the gantry by at least one maneuverable member. The MRD, by means of the gantry, is transportable from the first location to the second remote location adjacent the static patient. The aperture of the MRD's open-bore, by means of said maneuverable member, is directable towards a defined spatially orientation facing the static patient.
Abstract:
The present invention provides, in a magnetic resonance imaging device (MRD) comprising (a) a main longitudinal axis with a distal and proximal ends; (b) an open bore extended along the axis and terminated by an aperture located in the proximal end; and (c) a closure assembly which is shaped to fit the aperture; an RF shielding conduit (RFSC), having apertures shaped to permit passage of medical equipment tubing from the external environment of the MRD to inner space of the bore, affixed to the closure assembly, wherein the conduit is characterized by a length (l) and width (w), l:w ratio is greater than a predefined value n, thereby providing RF shielding.
Abstract:
A passive neonatal transport incubator (PNTI), useful for thermo-regulating a neonate, comprising an inner volume configured by means of size and shape to accommodate the neonate, the inner volume is defined by an envelope having a main longitudinal axis with a proximal end and an opposite distal end, having the envelope is at least partially perforated. Further the PNTI is configured to be ventilated by an independently ventilated medical device, and is configured by means of size, shape and material to allow the neonate be examined by the medical device.
Abstract:
A noise-attenuating neonate incubator (NANI) comprising sound attenuating module (SAM) configured to decrease the ratio, (AmpRatt_i), of the sound's amplitude at a time, t_i, to a reference amplitude, to a critical amplitude ratio value of said sound measured over a predetermined time, At, (AmpRQVΔt) or less. The SAM comprises passive noise attenuating, active noise attenuating or both. A method for sound attenuating a neonate incubator, characterized by: (a) obtaining a noise-attenuating neonate incubator (NANI) comprising sound attenuating module (SAM) configured to decrease AmpRatt_i to AmpRQVΔt or less; (b) accommodating said neonate in said NANI; and, (c) attenuating said noise by said at least one SAM, thereby changing the sound signature.
Abstract:
A method of reducing artifacts produced during Fast Spin Echo measurements made using permanent magnet NMR instruments. The method includes applying encoding gradients that do not switch signs throughout the experiment. Prior to the 90° RF pulse, a strong RM gradient pulse is given to produce a dominant and constant residual magnetization. The encoding is done through the combination of encoding gradients with the aid of the 180° RF pulses of the echo train. A first constant encoding gradient is given before the first 180 pulse. Then two variable encoding gradients are provided after each 180 pulse; one applied prior to and one applied subsequent to each acquisition in the echo train.