Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for enabling access control in a connected mode, idle mode, and an inactive state. An exemplary method generally includes receiving access control information associated with one or more services used by the UE for communicating with the wireless communications network, receiving a request to transmit traffic using the one or more services, checking a type of the traffic against the access control information, and scheduling the traffic for transmission if the type of the traffic satisfies one or more criteria in the access control information based on the checking.
Abstract:
Systems, methods and apparatus for non-optimized handoffs for wireless communication are provided. For example, the disclosure may be applied to enhance non-optimized handoff from a long-term evolution (LTE) network to an evolved high rate packet data (eHRPD) network. Systems, methods, and apparatus for reducing the interruption gap during handoffs from an LTE radio access network to an eHRPD network are also discussed. In one aspect, a method is provided for communicating information associated with a handoff of a wireless device from a source network to a target network. The method includes, during a period of data inactivity, attaching to a first network and creating a context therewith, the first network being a non-preferred network as compared to a second network. The method also include connecting to the second network based on the context created with the first network and while maintaining at least a partial context with the first network.
Abstract:
A method enables a user equipment (UE) intervention to reduce a network-initiated Quality of Service (QoS) interruption time or a disruption of the network-initiated QoS, while avoiding application intervention. The method includes communicating with a source radio access network (RAN) in accordance with a network-initiated quality of service (QoS) profile. The method also includes transferring to a target RAN. The method further includes triggering, by a user equipment (UE), a QoS setup to reestablish the QoS profile.
Abstract:
Internet protocol (IP) continuity is fundamentally not possible when a user equipment (UE) moves from an evolved packet core (EPC) radio access technology (RAT) to a non-EPC RAT. However, there are instances when it is beneficial to not completely release an EPC IP context, such as when the UE moves to the non-EPC RAT for only a short period of time. The UE may retain an EPC IP context in a suspended state while the UE is in the non-EPC RAT, and revive the context when the UE returns to the EPC RAT. Accordingly, a method, an apparatus, and a computer program product for maintaining an EPC context at a UE are provided. The apparatus suspends and retains the EPC context when moving from an EPC capable network to a non-EPC capable network, and resumes the suspended EPC context upon returning to the EPC capable network.
Abstract:
Aspects disclosed herein relate to enabling fallback to a second data service based on whether one or more fallback conditions are present before or during establishing a data context with a first data service. In one example, a UE may be configured to determine whether one or more fallback conditions are present before or during establishing a data session with a first data service. The UE may be further configured to prohibit further attempts to establish a data context to access the first data service based on the determination of the presence of at least one of the one or more fallback conditions. Some aspects disclosed herein relate to enabling fallback to a HRPD data service based on whether one or more fallback conditions are present before or during establishing a data context with an eHRPD data service.
Abstract:
Aspects of the present disclosure provide techniques for preventing loss of IP continuity when transitioning between networks. Certain aspects provide methods that generally include initiating a first timer upon attempting to transition from a first RAT network to a second RAT network during an IP session and initiating a second timer if a channel in the second RAT network is successfully acquired. According to aspects, a device may transfer context of the IP session to the second RAT network if a session is successfully negotiated in the second network prior to expiration of the second timer and the first and second networks share a common core network for IP services.
Abstract:
Aspects disclosed herein relate to effectively handling failure and retry mechanisms during pre-registration for an eHRPD optimized handover. In one example, a UE may be equipped to detect one or more instances of failure during a pre-registration procedure as part of an optimized handover process. The UE may further be equipped to perform one or more pre-registration retry processes based on the detected one or more instances of failure. In one aspect, the one or more instances of failure may include any combination of a permanent LTE connection failure, a temporary LTE connection failure, a session negotiation failure, a virtual connection failure when bringing up a data call, a link control protocol (LCP) failure, etc.
Abstract:
Aspects disclosed herein relate to enabling fallback to a second data service based on whether one or more fallback conditions are present before or during establishing a data context with a first data service. In one example, a UE may be configured to determine whether one or more fallback conditions are present before or during establishing a data session with a first data service. The UE may be further configured to prohibit further attempts to establish a data context to access the first data service based on the determination of the presence of at least one of the one or more fallback conditions. Some aspects disclosed herein relate to enabling fallback to a HRPD data service based on whether one or more fallback conditions are present before or during establishing a data context with an eHRPD data service.
Abstract:
A method for optimizing data retry mechanisms is described. The method includes attempting to originate a data call on an evolved high rate packet data system. The method also includes determining that originating the data call has failed. A type of failure that caused the data call to fail is determined. The frequency of data call origination attempts is reduced based on the type of failure.
Abstract:
An apparatus operable in a communication system and having the capability to discard an internet protocol address is described. The apparatus is configured to receive an assignment of a first internet protocol address of a first type for a first application and a second internet protocol address of a second type for a second application for a data connection to a network. The apparatus is also configured to determine that the apparatus is currently not able to handle both the first internet protocol address and the second internet protocol address. The apparatus is further configured to determine an internet protocol address to discard, and discard the determined internet protocol address.