Abstract:
Fat mixtures enriched with triglycerides having long, saturated, preferably C.sub.16 to C.sub.22, fatty acid residues and short, preferably C.sub.2 to C.sub.4, acid residues are employed in edible compositions as low calorie fats. The preferred embodiments comprise mixtures of at least two triglycerides bearing long residues (e.g. stearyl) and short residues (e.g. acetyl or propyl). In one preferred embodiment, each triglyceride contains short chain residues which are different from those in the other triglyceride. In another preferred embodiment, at least a portion of the triglycerides have two different short residues. Methods of using the low calorie fats and food products incorporating them, particularly in coating, shortening and margarine products, are disclosed.
Abstract:
Fat mixtures enriched with triglycerides having long, saturated, preferably C.sub.16 to C.sub.22, fatty acid residues and short, preferably C.sub.2 to C.sub.4, acid residues are employed in edible compositions as low calorie fats. The preferred embodiments comprise mixtures of at least two triglycerides bearing long residues (e.g. stearyl) and short residues (e.g. acetyl or propyl). In one preferred embodiment, each triglyceride contains short chain residues which are different from those in the other triglyceride. In another preferred embodiment, at least a portion of the triglycerides have two different short residues. Methods of using the low calorie fats and food products incorporating them, particularly in coating, shortening and margarine products, are disclosed.
Abstract:
A method and apparatus for producing a non-Newtonian fluid product including a non-Newtonian fluid base product including at least one second phase is shown. A second phase dispersion apparatus is shown which receives the at least one second phase and the non-Newtonian fluid base product and disperses the at least one second phase within the non-Newtonian fluid base product to produce the non-Newtonian fluid product.
Abstract:
A method and apparatus for producing a non-Newtonian fluid product including a non-Newtonian fluid base product including at least one second phase is disclosed. A second phase dispersion apparatus is disclosed which receives the at least one second phase and the non-Newtonian fluid base product and disperses the at least one second phase within the non-Newtonian fluid base product to produce the non-Newtonian fluid product.
Abstract:
A method and apparatus for producing a non-Newtonian fluid product including a non-Newtonian fluid base product including at least one second phase is disclosed. A second phase dispersion apparatus is disclosed which receives the at least one second phase and the non-Newtonian fluid base product and disperses the at least one second phase within the non-Newtonian fluid base product to produce the non-Newtonian fluid product.
Abstract:
Acetoglycerides are prepared in a solventless, single phase interesterification between triacetin and triglycerides bearing long C.sub.16 to C.sub.22 fatty acid residues by adding triglycerides bearing saturated C.sub.3 to C.sub.10 acid residues to the reaction mixture. The long acid residues may be hydrogenated before or after interesterification. In one embodiment, the C.sub.3 to C.sub.10 triglycerides are tripropionin, tributyrin, or mixtures of these; in another, these are triglycerides bearing C.sub.8 to C.sub.10 acid residues; and in a third, these are a mixture of tripropionin and/or tributyrin and C.sub.8 to C.sub.10 triglycerides. In preferred embodiments, the molar ratio of C.sub.16 to C.sub.22 triglycerides to triacetin and C.sub.3 to C.sub.10 triglycerides varies between 1:1 and 1:15, more narrowly between 1:3 and 1:12, and high temperatures are employed. The process diminishes catalyst use, obviates the need for high shear mixing, shortens reaction times, and simplifies purification steps.