Abstract:
Embodiments of the disclosure pertain to an optical or optoelectronic transceiver comprising an optical or optoelectronic receiver, an optical or optoelectronic transmitter, a plurality of electrical devices, a housing, and a heat sink having a non-planar surface. The optical or optoelectronic receiver includes a receiver optical subassembly (ROSA). The optical or optoelectronic transmitter includes a transmitter optical subassembly (TOSA). The electrical devices are configured to provide or control one or more functions of the optical or optoelectronic receiver and the optical or optoelectronic transmitter. The housing is over and/or enclosing the optical or optoelectronic receiver and the optical or optoelectronic transmitter. The housing includes a first section and a second section, and is configured to (a) be removably insertable into a cage or socket of a host device and (b) position the first section of the housing outside the cage or socket when the housing is inserted in the cage or socket. The heat sink is over or adjacent to the first section of the housing and is in thermal contact with the housing.
Abstract:
An optical or optoelectronic receiver and module, and methods of making and using the same, are disclosed. The receiver includes a photodetector, a first microelectromechanical device configured to reflect a multi-wavelength optical signal, a thin film filter configured to receive the multi-wavelength optical signal reflected by the first microelectromechanical device and separate a single-wavelength optical signal from the multi-wavelength optical signal, a first lens configured to focus the single-wavelength optical signal on the photodetector, and a second microelectromechanical device configured to reflect the single-wavelength optical signal towards the first lens. Each wavelength of the multi-wavelength optical signal represents or corresponds to a unique channel over which the receiver receives optical signals. The present receiver and methods enable low-cost, high-volume manufacturing of multi-channel optical or optoelectronic receivers.
Abstract:
A method and apparatus for providing transmission on a channel in a network are disclosed. For example, the method receives a plurality of source samples, divides the plurality of source samples into a plurality of subbands in accordance with a ratio of the plurality of source samples to a number of channel uses of the channel, wherein each subband comprises a first number of source samples, determines a channel input from the plurality of source samples in accordance with a hybrid coding scheme, and transmits the channel input over the network.
Abstract:
Techniques are described herein that are capable of generating a graphic flow having an unlimited number of connections between shapes. The shapes are provided in a visual representation of a workspace defined by pixels. For instance, a first shape may have an outer perimeter defined by a first subset of the pixels; a second shape may have an outer boundary defined by a second subset of the pixels, and so on. Any pixel in each subset may serve as a connection point. For example, a first pixel of the first subset may serve as a first connection point based on any of a variety of first criteria, and a second pixel of the second subset may serve as a second connection point based on any of a variety of second criteria. In accordance with this example, a connection may be provided between the first and second connection points.
Abstract:
A method and apparatus for providing transmission on a channel in a network are disclosed. For example, the method receives a plurality of source samples, divides the plurality of source samples into a plurality of subbands in accordance with a ratio of the plurality of source samples to a number of channel uses of the channel, wherein each subband comprises a first number of source samples, determines a channel input from the plurality of source samples in accordance with a hybrid coding scheme, and transmits the channel input over the network.
Abstract:
A system that incorporates teachings of the exemplary embodiments may include, for example, means for generating a disparity map based on a depth map, means for determining accuracy of pixels in the depth map where the determining means identifies the pixels as either accurate or inaccurate based on a confidence map and the disparity map, and means for providing an adjusted depth map where the providing means adjusts inaccurate pixels of the depth map using a cost function associated with the inaccurate pixels. Other embodiments are disclosed.
Abstract:
A method that employs a piecewise linear algorithm, P, to map m-dimensional symbols into code tuples, followed by the construction of codes of weight m from the code tuples. To reverse the operation, constant weight codes are converted to code tuples, and a reverse piecewise linear algorithm P′ is used to map the code tuples into symbols, from which data is recovered. The m-dimensional symbols are obtained from mapping of input data into the symbols, which are contained within an m-dimensional parallelopiped, with each coordinate having a different span but the symbols along each of the coordinate are equally spaced apart. The code tuples, which are obtained by employing process P, are contained within an m-dimensional simplex.
Abstract:
An optical or optoelectronic receiver and module, and methods of making and using the same, are disclosed. The receiver includes a photodetector, a first microelectromechanical device configured to reflect a multi-wavelength optical signal, a thin film filter configured to receive the multi-wavelength optical signal reflected by the first microelectromechanical device and separate a single-wavelength optical signal from the multi-wavelength optical signal, a first lens configured to focus the single-wavelength optical signal on the photodetector, and a second microelectromechanical device configured to reflect the single-wavelength optical signal towards the first lens. Each wavelength of the multi-wavelength optical signal represents or corresponds to a unique channel over which the receiver receives optical signals. The present receiver and methods enable low-cost, high-volume manufacturing of multi-channel optical or optoelectronic receivers.
Abstract:
Techniques are described herein that are capable of generating a graphic flow having an unlimited number of connections between shapes. The shapes are provided in a visual representation of a workspace defined by pixels. For instance, a first shape may have an outer perimeter defined by a first subset of the pixels; a second shape may have an outer boundary defined by a second subset of the pixels, and so on. Any pixel in each subset may serve as a connection point. For example, a first pixel of the first subset may serve as a first connection point based on any of a variety of first criteria, and a second pixel of the second subset may serve as a second connection point based on any of a variety of second criteria. In accordance with this example, a connection may be provided between the first and second connection points.
Abstract:
The present invention extends to methods, systems, and computer program products for assigning type parameters. Embodiments of the invention permit using a visual editor to edit arbitrary object instances in a graphical fashion. Instances of generic types can be manipulated to change the type parameters for that generic (to be able to change a List to a List , for instance). Values are preserved and data can be patched to other dependent nodes in an object hierarchy.