Abstract:
FIG. 1 is a front, right, top perspective view of a dish rack, showing my new design; FIG. 2 is a rear, left, bottom perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side view thereof; FIG. 6 is a right side view thereof; FIG. 7 is a top plan view thereof; FIG. 8 is a bottom plan view thereof; FIG. 9 is a front, right, top perspective view of the dish rack in a detached state; and, FIG. 10 is a rear, left, bottom perspective view of the dish rack in a detached state. The dashed broken lines in the figures illustrate portions of the dish rack that form no part of the claimed design. The dash-dot-dash broken lines are for notating enlarged views and form no part of the claimed design.
Abstract:
A tubular parison for forming a medical device balloon. The parison is formed of a polymeric material, for instance a thermoplastic elastomer. The parison has an elongation at break which is not more than 80% of the elongation of the bulk polymeric material. The elongation of the parison is controlled by altering extrusion conditions. Balloons prepared from the parisons provide higher wall strength and/or higher inflation durability than balloons prepared from conventional parisons of the same material.
Abstract:
A catalyst component for olefin polymerization which contains magnesium, titanium, halogen and electron donors is provided in the present invention. The electron donors are selected from at least one succinate compounds of following general formula (I), and the content of said succinate compounds with the structure as shown in Formula (II) in said succinate compounds (I) is less than 100%, but not less than 51.0 wt %. Compared with the mesomer whose content with the structure as shown in Formula (II) is 100%, the catalyst component provided by the present invention not only greatly decreases the manufacturing cost, but also improves certain properties of the catalyst, for example the molecular weight distribution of polymer obtained by catalytic reaction using said catalyst is wider, which is beneficial for improving processing properties of polymers. The corresponding catalyst is also provided.
Abstract:
A circuit protection device includes a substrate with first and second electrodes connected to the circuit to be protected. The circuit protection device also includes a heater element. A sensing element facilitates an electrical connection between the first and second electrodes. A flux material is provided around the sensing element. In a preferred embodiment, the flux contains a first component that is a polar material and a second component that is a non-polar material. A spring element exerts a force on the sensing element. The sensing element resists the force applied by the spring element. Upon detection of an activation, or fault, condition, the sensing element loses resilience and no longer resists the force exerted by the spring element, resulting in the spring element severing the electrical connection between the first and second electrodes. The flux allows the spring element to sever with electrical connection without dragging the sensing element.
Abstract:
Methods, systems, and uses of bucky paper are provided in the present invention. These embodiments include covering medical implants with single or multiple layers of bucky paper, treating bucky paper with various therapeutics to be released through the bucky paper to a target site, shaping bucky paper into non-conventional configurations for improved therapeutic deliver, and using bucky paper alone or in conjunction with other materials to treat a target site.
Abstract:
Method and apparatus for controlling bias point of DQPSK demodulator are disclosed. The method comprises: step 1: respectively applying first and second bias voltages to I-path and Q-path, and applying identical pilot voltage signals to I-path and Q-path (S202); step 2:executing filtering processing on I-path and Q-path differential current signals collected by balance receiver and determining θIand θQ (S204); step 3: performing feedback control to first and second bias voltages respectively according to θI and θQ so that θI and θQ respectively reaches expected bias point values of I-path and Q-path (S206); executing step 2 and 3 cyclically at preset regular intervals (S208), so that θI and θQ remains consistently the expected bias point values of I-path and Q-path. The solution enables bias point of DQPSK demodulator to be locked at any expected bias point value, facilitates realization of digitization, and is not easily influenced.
Abstract:
Described herein are medical devices which are configured for implantation or insertion into a subject, preferably a mammalian subject. The medical devices contain one or more multilayer regions, which contain: (a) one or more (typically a plurality of) charged nanoparticle layers and (b) one or more (typically a plurality of) charged polyelectroyte layers. Such multilayers have a number of desirable attributes, including high strength, non-compliance, and flexibility. Also described herein are methods of making such devices.
Abstract:
The present invention relates to a catheter device having a dilatation balloon formed from a polymeric material crosslinked by moisture through —Si—O—Si— linkages, and to a method of making the same. The polymeric material is formed by reacting at least one organofunctional hydrolyzable silane with at least one polymer. The crosslinked polymeric structure is ideal for forming more resilient and durable catheter balloons. In particular, the catheter balloons have excellent abrasion resistance.
Abstract:
A reflowable thermal fuse includes a positive-temperature-coefficient (PTC) device that defines a first end and a second end, a conduction element that defines a first end and a second end in electrical communication with the second end of the PTC device, and a restraining element that defines a first end in electrical communication with the first end of the PTC device and a second end, in electrical communication with a second end of the conduction element. The restraining element is adapted to prevent the conduction element from coming out of electrical communication with the PTC device in an installation state of the thermal fuse. During a fault condition, heat applied to the thermal fuse diverts current flowing between the first end of the PTC device and the second end of the conduction element to the restraining element, causing the restraining element to release the conduction element and activate the fuse.
Abstract:
Methods, systems, and uses of bucky paper are provided in the present invention. These embodiments include covering medical implants with single or multiple layers of bucky paper, treating bucky paper with various therapeutics to be released through the bucky paper to a target site, shaping bucky paper into non-conventional configurations for improved therapeutic deliver, and using bucky paper alone or in conjunction with other materials to treat a target site.