摘要:
Improved methods for fabricating semiconductor integrated circuit devices, in particular flash EEPROM devices. According to an embodiment, the present invention provides a method of forming a semiconductor device having a gate oxide layer (160) that is thin in some regions, such as the cell region, and thicker in other regions (165), such as the periphery region. The method simultaneously provides a gate oxide layer with two or more thicknesses without the thickness control problems of prior art methods that use contaminant-containing photoresist with an etching step. According to a specific embodiment of the present invention, the gate oxide has a first thickness that is sufficiently thin to provide high driving capability for the semiconductor ROM device, and a second thickness that is sufficiently thick to provide high voltage reliability of the semiconductor ROM device.
摘要:
A process for fabricating a semiconductor device comprising a source, a drain, and a gate electrode having an increased effective gate length. A semiconductor device is fabricated by a process comprising the following steps: forming active areas separated by field oxide regions; forming a lightly doped region in each active area; forming a heavily doped p-Si (or a-Si) layer; depositing and patterning several dielectric layers to form a gate area surrounded by vertical spacers; forming a groove in the gate area and the substrate; forming a gate oxide layer in the groove and driving dopants in the doped p-Si (or a-Si) layer into the substrate to form the source and the drain; and forming a gate electrode in the groove.
摘要:
A power MOSFET layout according to one embodiment of the invention comprises a substrate and a plurality of cells. Each of the cells includes a base portion, a plurality of protruding portions extending from the base portion, and a plurality of photo-resist regions. Each of the cells is geometrically configured with the base portion and the plurality of protruding portions defining a closed cell boundary enclosing each of said cells. The cells are formed over the substrate, and the closed cell boundaries of the cells are arranged regularly with each other with no overlapping among the cells. The base portions are disposed in a matrix arrangement having rows and columns. The base portions are oriented from end to end in a direction of the columns and the protruding portions extend from the base portions along a direction of the rows. The photo-resist regions cover the base portions on the same column. None of the protruding portions are disposed between the base portions on the same column. The cells are doped with N type dopants by using the photo-resist regions as masks.