Abstract:
The present invention is drawn to a layered organic device, and a method of forming the same. The method includes steps of applying a first solvent-containing organic layer to a substrate and removing solvent from the first solvent-containing organic layer to form a first solidified organic layer. Additional steps include applying a second solvent-containing organic layer to the first solidified organic layer and removing solvent from the second solvent-containing organic layer to form a second solidified organic layer. The first solidified organic layer can be crosslinked, which suppresses negative impact to components in the first solidified organic layer when the solvent of the second solvent-containing organic layer is deposited on the first solidified organic layer.
Abstract:
An ultra-high-density data storage device that relies on optical signals. The device includes a luminescent layer that emits light when stimulated by an electron beam. The device also includes a phase-change layer that contains data bits that may absorb or reflect the stimulated light before the light reaches a detector. Also, a method of data storage and retrieval that includes writing data bits in the phase-change layer, stimulating emissions in the luminescent layer, and reading data bits by monitoring the amount of light that reaches the detector.
Abstract:
An information storage unit functioning in a vacuum is provided wherein a data storage medium has an information storage area for storing and reading information thereon. An array of electron beam emitters is spaced from and in close proximity to the data storage medium for selectively directing a plurality of electron beams toward the data storage medium. Focusing optics between the array of electron beam emitters and the data storage medium focus each of the electron beams on one part of the information storage area of the data storage medium. A micro electromechanical motor associated with the data storage medium moves the data storage medium relative to the array of electron beam emitters, so that each of the emitters directs an electron beam selectively to a portion of the information storage area to read or write information therein. Electronic circuitry spaced from and in electronic communication with the array of electron beam emitters controls the operations of the array of electron beam emitters. A vacuum device in the information storage unit maintains the vacuum between the data storage medium and the array of electron beam emitters.
Abstract:
An improved process flow for an atomic resolution storage (ARS) system deposits conductive electrodes on a media side of a rotor wafer before wafer thinning process, i.e., grinding and CMP, thus protecting the conductive electrodes on a media surface from the grinding process. In addition, the CMOS circuitry is formed in a stator wafer at a relatively later stage. Therefore, the CMOS circuitry is less likely to be damaged by heat processing. In addition, some of the necessary processing may be performed with loosened thermal budget. Finally, because wafer bonding of the rotor wafer and the stator wafer is performed at a later stage, there is less probability of degradation of the wafer bonding. Accordingly, device yield may be enhanced, leading to lower manufacturing cost.
Abstract:
A fluorene-based copolymer of formula I includes a monomeric unit that includes a fluorene group and at least one steric hindering chemical group to provide sufficient steric interaction such that the spatial conformation of the fluorene-based copolymer is substantially non-planar. The fluorene-based copolymer exhibits UV light emission.
Abstract:
A system and method of capturing a skin print from skin having ridges and valleys. A skin print sensor having a return/supply contact and a plurality of contact pads is provided. A finger is applied to the skin print sensor and data is stored representative of contact pads in contact with skin ridges.
Abstract:
An improved process flow for an atomic resolution storage (ARS) system deposits conductive electrodes, together with a protective layer, on a media side of a rotor wafer before most of other device processing, thus preserving a surface for ARS storage media from subsequent wafer thinning process. CMOS circuitry is also formed in a stator wafer at a later stage. Therefore, the CMOS circuitry is less likely to be damaged by heat processing. In addition, processing of the media side of the rotor wafer may be performed with loosened thermal budget. Finally, because the media side of the rotor wafer is processed before wafer bonding of the rotor wafer and the stator wafer, there is less probability of degradation of the wafer bonding. Therefore, device yield may be enhanced, leading to lower manufacturing cost.