Abstract:
A method and apparatus is described for transmitting and receiving data signals and voice band signals over a single pair of wires, wherein the energy content of the data signals in the voice bands is transferred to a higher frequency to avoid interference between the two. This is accomplished by sinusoidally encoding the data pulses in the frequency domain. The encoding is equivalently performed in the time domain by linearly combining weighted delayed and advanced versions of the data pulses, in accordance with a weighting formula. A transversal filter is used to multiple delayed and advanced versions of the data pulses by a scaling factor times the ratio of m!/(m-i)!i! factorial wherein i is the ith version being weighted, m is an integer greater than one and ! indicates the factorial function.
Abstract:
A received cyclic code word is clocked into a first register (11). As soon as the whole received word has been read in, it is parallel-loaded into a storage register (12). The syndrome is then formed (13) of the stored code word. This syndrome is coupled to a logic circuit (14) which determines whether the last stored bit is in error. This decision is modulo-2 added (15) with the last bit, the output being the correct version of the last bit which is then clocked into the input of the storage register. The operation is repeated a given number of times (nt*) at the end of which the maximum likelihood decision on r(x)--the cyclic code word--is present in the storage register (12), ready to be read out.
Abstract:
In an embodiment, a field programmable analog array (FPAA) comprises state variable filter engines arranged in parallel, each state variable filter engine comprising at least one variable attenuator and at least one variable integrator configured to operate on a wideband analog signal; and a summer configured to add outputs from the state variable filter engines.
Abstract:
In an embodiment, a field programmable analog array (FPAA) comprises state variable filter engines arranged in parallel, each state variable filter engine comprising at least one variable attenuator and at least one variable integrator configured to operate on a wideband analog signal; and a summer configured to add outputs from the state variable filter engines.
Abstract:
Present software-defined radios (SDR) employ front end circuits that contain multiple receivers and transmitters for each band of interest, which is inflexible, expensive and power inefficient. A programmable front end circuit is implemented on a CMOS device and is configurable to transmit and receive signals in a wide band of frequencies, thereby providing an adaptable transmitter and receiver operable with current and future wireless networking technologies.
Abstract:
Broadband analog radio-frequency devices can be used to create building blocks for scalable analog signal processors that operate over bandwidths of 50 MHz to 20 GHz or more. Example devices include integrators (transconductors), digitally controlled attenuators, buffers, and scalable summers implemented using deep sub-micron CMOS technology. Because the devices are implemented in CMOS, the ratio of trace/component size to signal wavelength is about the same as that of low-frequency devices implemented in printed circuit boards. Combining this scaling with high gain/high bandwidth enables implementation of feedback and programmability for broadband analog signal processing.
Abstract:
Embodiments include methods, systems, and apparatuses capable of dynamically and adaptively operating on wideband signals. Examples include state variable filters whose center frequencies can be tuned using variable gain blocks coupled to outputs of filter integrators. First- and second-order state variable filters may operate on signals in parallel and their outputs combined to produce a filtered output. Filters may be tuned to pass or reject signals depending on the application; sample applications include, but are not limited to: agile filtering; spectrum analysis; interference detection and rejection; equalization; direct intermediate-frequency transmission; and single-sideband modulation and demodulation.
Abstract:
Hybrid fiber/coax networks employ the existing cable plant used for cable TV and transmit data signals in a frequency bandwidth above that which is used for cable TV. As this cable plant was deployed in a tree and branch topology, data transmissions may be susceptible to noise, variable transmission loss and frequency dispersion, particularly in the upstream direction. Further, due to the tree and branch topology, homes at the far end of the network experience much greater loss than do the homes that are near to the headend/ONU. The present system, which uses point-to-point data links between intelligent network elements located in the feeder/distribution network to provide reliable, secure, bi-directional broadband access. Digital signals are terminated at the intelligent network elements, switched and regenerated for transmission across additional upstream or downstream data links as needed to connect a home to a headend or router. The intelligent network elements can be co-located with or replace the standard network elements to take advantage of existing network configurations. The standard network elements can be selectively replaced by the intelligent network elements in an incremental approach. A method of discovering the network topology includes sending a message from one of the network elements on a transmission path to a topology server, the message including information identifying the one network element. At each intermediate network element in the transmission path, information identifying each intermediate network element is appended to the message. In this manner, the data links are made over relatively short runs of coax cable, which can provide greater bandwidth than the typical end-to-end feeder/distribution connection between a home and the headend or optical network unit.
Abstract:
Loop Performance Monitoring (LPM) for DDS loops is described. Even though DDS loops have Intentional Bipolar Violations (BPVs), a Loop Coding Violations (LCVs) detection strategy based on further processing of BPVs is described. By monitoring LCVs a local loop terminating device can determine Bit Error Rate (BER).A system is described by which an Office Channel Unit (OCU) can process LCV information to determine signal quality of the signal over the incoming local loop. If the signal quality falls below a certain threshold, the OCU can cut the loop off from the DDS circuit and send control codes into the network.A system is also described where a Network Interface Unit (NIU) with the LPM system communicates incoming LCV information to the OCU using low speed signalling over the simplex path between the transmit and receive pairs. The OCU monitors incoming LCVs as well, and thus has the information necessary to determine bi-directional BER performance.
Abstract:
A communication system is described which enables efficient delivery of asymmetrical bandwidth signals over a communication network. The system includes a virtual circuit switch having a space switch coupled thereto for distributing downstream signals from a backbone network to subscribers in a cost effective manner.