Abstract:
The described aspects include methods and apparatus for aggregating carriers over a backhaul link between a relay and an evolved Node B (eNB). A first set of subframes of at least a first carrier of a plurality of carriers configured for communicating with an eNB over a backhaul link can be determined. A second set of subframes of at least a second carrier of the plurality of carriers configured for backhaul link communications is also determined, wherein the second set of subframes are different from the first set of subframes. Data received over a plurality of access link carriers can then be communicated to the eNB over the first carrier and the second carrier based at least on the first set of subframes and the second set of subframes.
Abstract:
Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation.
Abstract:
An ion mobility spectrometer comprises an electrode and two storage electrodes disposed at the two opposite sides of the electrode respectively. Ions from an intermediate part between the two storage electrodes are stored and the stored ions are released from the storage electrodes by changing electric potentials of the two storage electrodes. The present invention further discloses a detecting method using an ion mobility spectrometer.
Abstract:
Disclosed is an ion gate for a dual IMS and method. The ion gate includes an ion source, a first gate electrode placed on one side of the ion source, a second gate electrode placed on the other side of the ion source, a third gate electrode placed on the side of the first gate electrode away from the ion source, a fourth gate electrode placed on the side of the second gate electrode away from the ion source, wherein during the ion storage, the potential at the position on the tube axis of the ion gate corresponding to the first gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the third gate electrode, and the potential at the position on the tube axis corresponding to the second gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the fourth gate electrode. According to the present invention, after sample gas enters the ion gates, charge exchange with reaction ions occurs between the first gate electrode and the second electrode, and positive and negative ions are continuously stored into the storage regions for the positive and negative ions. This leads to an improvement of utility rate of ions. Then, the ions are educed in a step-wise manner from the storage regions for the positive and negative ions by a simple control of a combination of the electrodes.
Abstract:
For range expansion, a determination to enter range expansion may be made based on a signal strength differential for user equipment (UE) communications between a first class of base stations and a second class of base stations. If the signal strength differential is beyond a certain threshold, range expansion may be implemented. In range expansion, a signal is transmitted, on a resource coordinated with at least one of the first class of base stations, from one of the second class of base stations to the UE which could experience dominant interference from one of the first class of base stations if coordination were not performed. Transmission power may be reduced from one of the first class of base stations on that resource. The second signal may be transmitted within the region of the Physical Downlink Shared Channel.
Abstract:
Providing for dynamic resource provisioning in wireless communication is described herein. By way of example, various wireless performance metrics are collected by respective network access points as an aggregate measure of wireless network performance. Aggregated data can be utilized to generate a performance model for the network and for individual access points. Changes to the data are updated to the model to provide a steady-state characterization of network performance. Wireless resources are generated for respective access points in a manner that optimizes wireless performance. Additionally, resource assignments can be updated at various intervals to re-optimize for existing wireless conditions, whether event driven or based on performance metrics. Accordingly, a robust and dynamic optimization is provided for wireless network resource provisioning that can accommodate heterogeneous access point networks in a changing topology.
Abstract:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
Abstract:
Methods, apparatuses, and computer program products are disclosed for encoding/decoding a wireless control signal. For encoding, control bits are received and encoded with a first error control code so as to create a first set of encoded bits. The encoded bits are then encoded with a second error control code so as to create a second set of encoded bits, which are modulated as beacon tones and subsequently transmitted. For decoding, beacon tones corresponding to a set of control bits are received and subsequently demodulated so as to ascertain a set of demodulated bits. The demodulated bits are then decoded with a decoder so as to ascertain a set of decoded bits. The decoded bits are then decoded with a second decoder so as to ascertain a second set of decoded bits, which includes the set of control bits.
Abstract:
For range expansion, a determination to enter range expansion may be made based on a signal strength differential for user equipment (UE) communications between a first class of base stations and a second class of base stations. If the signal strength differential is beyond a certain threshold, range expansion may be implemented. In range expansion, a signal is transmitted, on a resource coordinated with at least one of the first class of base stations, from one of the second class of base stations to the UE which could experience dominant interference from one of the first class of base stations if coordination were not performed. Transmission power may be reduced from one of the first class of base stations on that resource. The second signal may be transmitted within the region of the Physical Downlink Shared Channel.
Abstract:
Providing for fair resource sharing among wireless nodes in a wireless communication environment is described herein. By way of example, fairness can comprise establishing a set of resource sharing credits for wireless nodes. By expending credits, a node can borrow a resource of another node, to enable or enhance operation of the borrowing node. Credits for the borrowing node are decreased based on consumption of a shared resource, or credits for the lending node are increased based on such consumption, or both. Once an amount of credits expires, a node can be restricted from borrowing further resources until enough resources are lent to build up a suitable amount of credits. Accordingly, fairness can comprise correlating shared resource consumption with shared resource provisioning, to encourage participation in cooperative wireless communications.