Abstract:
A cam shaft adjuster for adjusting the angle-of-rotation positions of a cam shaft relative to a crankshaft. The cam shaft adjuster has at least two operating chambers to which pressure oil can be supplied to change the angle-of-rotation position. At least one of the operating chambers can be deactivated depending on an operating parameter by blocking the pressure oil supply.
Abstract:
A device (1) for changing the timing of an internal-combustion engine (2) is provided that has a camshaft adjuster (5), which is supported on a non-rotating bearing journal (6). A driving wheel (8) of the camshaft adjuster (5) is driven by a crank-shaft (3) via a first traction mechanism drive (7). The rotation of the driving wheel (8) is transferred via an actuator (10) to a driven part (9), which is arranged so that it can rotate relative to the driving wheel (8). Second and third traction mechanism drives (11, 12) create a drive connection between the driven part (9) and two camshafts (4, 4a).
Abstract:
A device for changing the control times of gas-exchange valves in an internal combustion engine is provided, which includes a drive wheel (2) in driven connection with the crankshaft and a vane rotor (3) fixed with the camshaft. The drive wheel (2) has a hollow space, which is formed by a hollow cylindrical peripheral wall (4) and two lateral walls (5, 6), in which at least one hydraulic work chamber (9) is formed by at least two radial limit walls (7, 8), which is divided by at least one vane (11) into an A pressure chamber (12) and a B pressure chamber (13). The vane rotor (3) can be coupled mechanically with the drive wheel (2) by a separate locking element (14), that can be moved into a locked position within a receptacle (19) in the lateral walls (5) of the drive wheel (2). The receptacle (19) is connected hydraulically to the A pressure chamber (12) via a pressure medium supply groove (18) provided in an inner surface of the lateral wall (5), so that upon pressurization of the A pressure chamber (12), the locking element (14) can move hydraulically into an unlocked position in the rotor hub (10) of the vane rotor (3). According to the invention, a local stop (20) is arranged within the pressure medium supply groove (18) in the inner surface of the lateral wall (5), through which a pressure medium supply to the receptacle (19) of the locking element (14) is possible only through a bypass (21) when the vane rotor (3) is in the base position.
Abstract:
A gearbox with an actuating device for automated shifting and selection of transmission ratios includes a gearbox operating element that is driven by an actuator. The actuator has a drive source with an output element. A swivel movement of the output element causes the gearbox operating element to shift into or out of a transmission ratio or to select one of the shift slots of a shift-gate pattern and to simultaneously apply a force to an energy-storing device. The energy-storing device acts on an intermediate element which acts on the gearbox operating element. At least one retaining element limits the actuation of the intermediate element to a predetermined position.
Abstract:
An internal-combustion engine with a hydraulic device (1) for rotation angle adjustment of a camshaft (2) relative to a crankshaft is provided and includes a rotor with an impeller form (7), which is rotationally fixed via a central fastener (6) to the camshaft, and a stator (4), which rotates synchronously with a drive wheel (3) driven by the crankshaft, wherein on both sides of the impeller blades of the rotor, there are pressure chambers, which are each limited by radial walls of the stator (4) and can be filled with and emptied of hydraulic fluid via a hydraulic system, wherein the hydraulic fluid is guided, on one hand, via an annular gap (13) between rotor (7) and the central fastener (6) and, on the other hand, through generally axial and radial channels into the pressure chambers. Through the use of a rotor (7) with a groove (10) running in the circumferential direction and a ring shaped intermediate element (9) adapted to the device, the internal-combustion engine can be equipped with a device (1) for adjusting the rotation angle, for which the number and/or arrangement of the axial channels for supplying hydraulic fluid do not agree with those of the camshaft of the internal-combustion engine. This construction enables the use of the device (1) on many different internal-combustion engines, without expensive adaptations of the device (1).
Abstract:
A hydraulic device for adjusting the rotation angle of a camshaft relative to a crankshaft in an internal combustion engine. The device has a rotor, with blades arranged around its periphery. A stator is connected in a rotationally secure manner to a drive wheel. The rotor and the stator together form pressure chambers, which can be filled with hydraulic fluid via a hydraulic fluid system, in which there is disposed a volume accumulator.
Abstract:
A hydraulic device for adjusting the rotation angle of a camshaft relative to a crankshaft in an internal combustion engine. The device has a rotor, with blades arranged around its periphery. A stator is connected in a rotationally secure manner to a drive wheel. The rotor and the stator together form pressure chambers, which can be filled with hydraulic fluid via a hydraulic fluid system, in which there is disposed a volume accumulator.
Abstract:
An internal-combustion engine with a hydraulic device (1) for rotation angle adjustment of a camshaft (2) relative to a crankshaft is provided and includes a rotor with an impeller form (7), which is rotationally fixed via a central fastener (6) to the camshaft, and a stator (4), which rotates synchronously with a drive wheel (3) driven by the crankshaft, wherein on both sides of the impeller blades of the rotor, there are pressure chambers, which are each limited by radial walls of the stator (4) and can be filled with and emptied of hydraulic fluid via a hydraulic system, wherein the hydraulic fluid is guided, on one hand, via an annular gap (13) between rotor (7) and the central fastener (6) and, on the other hand, through generally axial and radial channels into the pressure chambers. Through the use of a rotor (7) with a groove (10) running in the circumferential direction and a ring shaped intermediate element (9) adapted to the device, the internal-combustion engine can be equipped with a device (1) for adjusting the rotation angle, for which the number and/or arrangement of the axial channels for supplying hydraulic fluid do not agree with those of the camshaft of the internal-combustion engine. This construction enables the use of the device (1) on many different internal-combustion engines, without expensive adaptations of the device (1).
Abstract:
A cylinder and piston unit, which can be utilized to select the gears of and/or to shift a change-speed transmission in the power train of a motor vehicle, has a housing provided with two internal chambers and internal stops and receiving a reciprocable assembly of three pistons including two interconnected pistons each adjacent a different one of the two chambers and a hollow cylindrical piston which surrounds one of the two interconnected pistons. The chambers can receive a pressurized hydraulic or pneumatic fluid jointly or independently of each other to thus effect movements of the interconnected pistons (with and/or relative to the holow piston) against selected stops and to thus select the positions of the interconnected pistons. Such interconnected pistons can be utilized to select the ratio of the change-speed transmission. The chambers can confine springs which assist or oppose the action of fluid upon the surfaces of the interconnected pistons.
Abstract:
The phase of a camshaft in an internal combustion engine can be changed by the piston rod of a double-acting hydraulic cylinder and piston unit which is controlled by a valve having a spool movable axially by an electromagnet which is adapted to be influenced by a plurality of signals including those from the engine electronics.