Abstract:
An automatic gain control (AGC) method and system for a radio receiver are proposed in which the ACG comprises two AGC loops; a first loop controlling signal gain in the analogue portion of the radio receiver, a second loop controlling gain in the digital domain after digitization of the received signal. The analogue AGC loop has a slower response time than the digital AGC loop. When applied to a multi-branch diversity receiver, each branch has its own digital AGC loop, but the analogue gain can be common to all branches, based on measurement of the analogue signal in each branch.
Abstract:
A receiver (200) for receiving for receiving encoded data transmitted simultaneously as a plurality of M different sequences of transmitted symbols from different transmit antennas using a plurality of m modulation levels, where M and m are integers and each of the transmitted symbols represents a plurality of bits of the encoded data, comprises a demodulator (210) arranged to provide N received symbol combinations by receiving at a plurality of N receive antennas (202, 204), where N is an integer, the plurality of M different sequences of transmitted symbols, wherein each received symbol combination comprises M simultaneously received ones of the transmitted symbols. An equaliser (230) is arranged to generate from the N received symbol combinations M pre-processed signals by performing interference cancellation, in which interference cancellation a different symbol of the respective received symbol combination is a wanted signal and the other symbols of the respective received symbol combination are interfering signals. The equaliser (230) is also arranged to generate from each of the M pre-processed signals a list of up to m initial candidate symbol combinations by, for each of the up to m initial candidate symbol combinations, selecting a first initial symbol indicative of a different one of the m modulation levels and selecting M−1 further initial symbols. The equaliser (230) is further arranged to generate from the lists of initial candidate symbol combinations an initial estimate of the transmitted symbols. A decoder (260) is arranged to decode bits represented by the initial estimate of the transmitted symbols.
Abstract:
The invention provides circuitry integrated into a silicon chip that measures aspects of an RF signal on a transmission line in order to provide data that is ultimately used by an antenna tuner circuit to substantially match the impedance of the antenna with that of the transmission line providing the RF frequency to be transmitted.
Abstract:
A modulator (100) comprises a polar generation stage (120) arranged for generating an amplitude component and a phase component of a modulation signal, a differentiator stage (150) arranged for generating a differentiated phase component by differentiating the phase component; and an event detection stage (170) arranged for detecting a high bandwidth event by detecting at least one of the amplitude component and the differentiated phase component meeting an event criterion. An inversion stage (130) is arranged for generating a modified amplitude component by inverting the amplitude component in response to detecting the high bandwidth event. A phase offset stage (150) is arranged for generating a modified differentiated phase component by, in response to detecting the high bandwidth event, adding to the differentiated phase component a phase offset having a magnitude of 180 degrees and a sign opposite to a sign of the differentiated phase component. An amplitude modulation stage (300) is arranged for employing the modified amplitude component to modulate the amplitude of a carrier signal, and a phase modulation stage (200) is arranged for employing the modified differentiated phase component to modulate the frequency of the carrier signal.
Abstract:
A wireless telecommunications device configured to use Session Initiation Protocol in communication with other telecommunications devices comprises a modem subsystem configured to deploy Internet Protocol Multimedia Subsystem services using Session Initiation Protocol and comprising a Session Initiation Protocol stack; and an application processing engine configured to deploy Internet Protocol Multimedia Subsystem services using Session Initiation Protocol and comprising a Session Initiation Protocol stack. The device comprises a logical element configured to capture Session Initiation Protocol messages from Internet Protocol Multimedia Subsystem services to an external Session Initiation Protocol proxy server and to function as a Session Initiation Protocol Back-to-Back User Agent; and send to the external Session Initiation Protocol proxy server Session Initiation Protocol messages based on the captured messages. The need for special Application Programming Interface between the two subsystems is avoided, and multiple SIP request messages need no longer be sent.
Abstract:
An automatic gain control (AGC) method and system for a radio receiver are proposed in which the ACG comprises two AGC loops; a first loop controlling signal gain in the analogue portion of the radio receiver, a second loop controlling gain in the digital domain after digitization of the received signal. The analogue AGC loop has a slower response time than the digital AGC loop. When applied to a multi-branch diversity receiver, each branch has its own digital AGC loop, but the analogue gain can be common to all branches, based on measurement of the analogue signal in each branch.
Abstract:
A wireless communication device (400) is arranged to transmit a transmission signal in an assigned channel bandwidth. The wireless communication device (400) comprises: a local oscillator (460) arranged to generate a local oscillator signal at a local oscillator frequency and a modulator (434) arranged for converting in-phase and quadrature-phase components of a modulation signal at a modulation frequency to a radio frequency by mixing the in-phase and quadrature-phase components with the local oscillator signal. The local oscillator frequency is arranged to place a third order intermodulation product having a frequency equal to the local oscillator frequency minus three times the modulation frequency within the assigned channel bandwidth.
Abstract:
A power management integrated circuit comprises a plurality of power source circuits power received at a power supply input terminal to supply power to a plurality of power supply output terminals. A plurality of power source circuits is coupled between the power supply input terminal and the respective power supply output terminals. The power management integrated circuit comprises an active configuration memory and a communication interface with at least one terminal for uploading configuration data from outside the power management integrated circuit into the configuration memory. A control circuit controls operating parameters of respective ones of the power source circuits dependent on the configuration data from the active configuration memory. Thus, the power management integrated circuit is able to switch between different power supply states in a dynamically configurable way, without requiring external control over the configuration during switching.
Abstract:
The embodiments of the present disclosure disclose a soft bit un-uniform quantization method, apparatus, computer program and storage medium. The soft bit un-uniform quantization method comprises: determining a threshold value; obtaining a quantization step according to the threshold value; obtaining a first data after a QAM demodulating and before a Turbo decoding in a wireless communication system; and performing a soft bit un-uniform quantization on the first data to obtain a quantization result according to the threshold value and the step. According to the present disclosure, the data after the QAM demodulating and before the Turbo decoding may obtain a distinguished Euclidean distance value and thus the performance can be improved greatly.
Abstract:
A modulator comprises a polar generation stage that generates an amplitude and phase component of a modulation signal, a differentiator stage that generates a differentiated phase component by differentiating the phase component; and an event detection stage that detects a high bandwidth event by detecting the amplitude component and/or the differentiated phase component meeting an event criterion. An inversion stage generates a modified amplitude component by inverting the amplitude component in response to detecting the high bandwidth event. A phase offset stage generates a modified differentiated phase component by, in response to detecting the high bandwidth event, adding to the differentiated phase component a phase offset having a magnitude of 180° and a sign opposite to a sign of the differentiated phase component. Amplitude and phase modulation stages employ the modified amplitude component and the modified differentiated phase component to respectively modulate the amplitude and frequency of a carrier signal.