Abstract:
The invention provides therapeutic fusion proteins which include a first peptide portion comprising a first non-heparin binding VEGF peptide portion and a second non-VEGF peptide portion covalently associated with the first peptide portion, which first and second peptide portions separately promote angiogenesis, bone growth, wound healing, or any combination thereof. Further provided are polynucleotides encoding such fusion proteins, vectors including such polynucleotides, methods of making such proteins, and methods of promoting angiogenesis, bone growth, and/or wound healing using such proteins, polynucleotides, and vectors.
Abstract:
The present invention provides a method of in vitro propagation of a viral eukaryotic gene transfer vector comprising a deleterious, i.e., a cytostatic, cytotoxic, or apoptotic, gene in a eukaryotic, e.g., a mammalian, host-production cell, comprising a blocking gene. The blocking gene inhibits the adverse effects of the deleterious gene on the eukaryotic host-production cell. Vectors and cells useful in the context of the present inventive method are also provided.
Abstract:
The present invention provides a method of modulating the persistence of expression of a transgene in an at least E4null adenoviral vector in a cell. In one embodiment, the method comprises contacting the cell with an at least E4null adenoviral vector comprising (i) a transgene and (ii) a gene encoding a trans-acting factor, which is not from the E4 region of an adenovirus and which modulates the persistence of expression of the transgene. In another embodiment, the method comprises contacting the cell simultaneously or sequentially with (i) an at least E4null adenoviral vector comprising a transgene and (ii) a viral vector comprising a gene encoding a trans-acting factor, which is not from the E4 region of an adenovirus and which modulates the persistence of expression of the transgene. In addition, the present invention provides a recombinant at least E4null adenoviral vector for use in the method and a composition comprising the vector and a carrier therefor. Also provided by the present invention is a system for modulation of a recombinant at least E4null adenoviral vector for use in the method and a composition comprising the system and a carrier therefor.
Abstract:
The invention is directed to a replication-deficient adenoviral vector comprising a nucleic acid sequence encoding a human atonal homolog-1 (Hath1) protein operably linked to a human glial fibrillary acidic protein (GFAP) promoter. The invention also is directed to a composition and method utilizing the adenoviral vector to generate sensory cells in the inner ear of a human.
Abstract:
The invention provides a replication-deficient serotype 28 adenoviral vector characterized by comprising a portion of a serotype 45 adenoviral hexon protein and/or a portion of a serotype 45 fiber protein in place of the endogenous serotype 28 hexon and/or fiber protein.
Abstract:
The invention provides an adenovirus or adenoviral vector characterized by comprising one or more particular nucleic acid sequences or one or more particular amino acid sequences, or portions thereof, pertaining to, for example, an adenoviral pIX protein, DNA polymerase protein, penton protein, hexon protein, and/or fiber protein.
Abstract:
The invention is directed to a composition comprising one or more polypeptides or one or more nucleic acid sequences that can induce a protective immune response against Plasmodium species that infect humans. The invention also is directed to a method of using such compositions to induce a protective immune response against a Plasmodium parasite in a mammal.
Abstract:
The invention provides an adenovirus or adenoviral vector characterized by comprising one or more particular nucleic acid sequences or one or more particular amino acid sequences, or portions thereof, pertaining to, for example, an adenoviral pIX protein, DNA polymerase protein, penton protein, hexon protein, and/or fiber protein.
Abstract:
The invention is directed to a replication-deficient adenoviral vector comprising a nucleic acid sequence encoding a human atonal homolog-1 (Hath1) protein operably linked to a human glial fibrillary acidic protein (GFAP) promoter. The invention also is directed to a composition and method utilizing the adenoviral vector to generate sensory cells in the inner ear of a human.