摘要:
A method of generating network topology parameters of a communications network domain comprising a plurality of network nodes and a plurality of interconnecting links. The method comprises: identifying network nodes configured to interface with one or more other network domains as summarized nodes; and generating network topology parameters for one or more pairs of summarized nodes. The network topology parameters are dependent on the transmission parameters of one or more identified paths between said pair of summarized nodes. At least one said path comprises at least one other network node and respective interconnecting links.
摘要:
Configuring a node (410, A-I, L-O) of a synchronization network, involves determining information about synchronization sources of a plurality of synchronization trails for passing synchronization information from the synchronization source (A, L, O, PRC) to the node to provide a synchronization reference. After determining automatically (210, 230, 330, 335, 340) synchronization transmission characteristics of trails (EF, FG, GH, HM, MN, OF, FI, IH) which use packet-based communication, the trails are compared automatically (240, 370), using their source information and their synchronization transmission characteristics, for selecting which of these trails to use for providing the synchronization reference for the node (N). Compared to selections made based on source alone, using the synchronization transmission characteristics of the packet based parts can enable a better choice of trail, and can enable comparison with synchronous type trails, and so enable hybrid synchronization networks to be configured and maintained.
摘要:
A system, method, and node for a Routing Controller (RC) to obtain from a Path Computation Element (PCE), network resource path metrics across a plurality of domains in a communication network in which each domain includes a plurality of Border Nodes (BNs). The RC sends to the PCE, a first message requesting a first path computation between each pair of BNs. The first message contains a maximum metric-value that a path computation must not exceed for a Path Computation Client (PCC) to consider the path computation acceptable. The RC then sends a second message requesting the PCE to compute a subsequent path computation for each BN pair for which the first path computation did not exceed the maximum metric-value. The second message contains a minimum metric-value that a path metric must exceed for the PCC to consider the path metric acceptable. The RC then receives the computed subsequent path computation.
摘要:
A method for optimisation of the number and location of regenerative or non-regenerative repeaters in a WDM link made up of N spans connected in a succession of N−1 intermediate sites to form link sections separated by sites containing regenerative repeaters, comprises a step for defining the number of regenerative repeaters needed and giving them a first location. Said step comprises the phases of defining targets OSNRs (VOSNRT) as a function of the number of spans and the type of fibre used in the spans, and defining a possible section between an initial site and a final site, appraising a metric function VM for said possible section obtained as a function of the difference between the OSNR (VOSNR) at the final end of the first span of said possible section and the corresponding target OSNR (VOSNRT) given by the number of spans in said possible section. If the appraised metric function VM satisfies an established quality parameter, add to the possible section the following span in the link and again appraise the metric function for said new possible section obtained as a function of the difference between the OSNR (VOSNR) at the final end of the first span of the possible section and the corresponding target OSNR (VOSNRT) with the new number of spans in the possible section. Said steps are repeated iteratively while adding spans to the possible section until the metric function VM no longer satisfies the quality parameter and one returns at the end site preceding the last span added and positions a regenerator in said site. The procedure is repeated until the end of the new section is identified or to exhaustion of the spans of the link.
摘要:
A network architecture is provided for enabling end-to-end paths to be computed across a plurality of network domains. The network architecture comprises a plurality of child path computation elements associated with a plurality of respective network domains, each child path computation element adapted to compute a path segment within its respective network domain. A parent path computation element adapted to compute an end-to-end path across a plurality of network domains in conjunction with the plurality of respective child path computation elements.
摘要:
A Common Public Radio Interface (CPRI) link involves using a protocol stack having a CPRI layer and an emulation layer to emulate a point to point link, to enable the CPRI link to operate over a packet switched network. The emulation layer can be a pseudowire emulation which encapsulates multiple CPRI frames in a packet with overhead. A multiplexing layer such as Internet Protocol (IP) or Multiprotocol Label Switching (MPLS) can be used, for sending the packet over an Ethernet network. The usual need for a point to point infrastructure for the CPRI link can be avoided and the CPRI link can be implemented over more complex but usually cheaper packet networks, thus reducing costs or enabling more widespread application over existing packet networks. This applies whether the packet network is dedicated to the CPRI link, or shared with other packets. It can be useful for distributed radio base stations.
摘要:
Configuring a node (410, A-I, L-O) of a synchronization network, involves determining information about synchronization sources of a plurality of synchronization trails for passing synchronization information from the synchronization source (A, L, O, PRC) to the node to provide a synchronization reference. After determining automatically (210, 230, 330, 335, 340) synchronization transmission characteristics of trails (EF, FG, GH, HM, MN, OF, FI, IH) which use packet-based communication, the trails are compared automatically (240, 370), using their source information and their synchronization transmission characteristics, for selecting which of these trails to use for providing the synchronization reference for the node (N). Compared to selections made based on source alone, using the synchronization transmission characteristics of the packet based parts can enable a better choice of trail, and can enable comparison with synchronous type trails, and so enable hybrid synchronization networks to be configured and maintained.
摘要:
An optical network is configured to provide an optical reroute over a backup path (2139) during a failure in a signal path (2133). The network comprises a first node (B). A second node (C) is coupled to receive a signal from the first node (B) via the signal path (2133), and a backup signal via the backup path (2139). The network is adapted to transmit a signal and a corresponding backup signal from the first node to the second node even when there is no failure in the signal path (2133), wherein the backup signal is blocked at the second node (C) when there is no failure in the signal path (2133). Embodiments of the invention utilize the broadcast and blocking functionalities of a wavelength selective switch (WSS) device. Such WSS devices enable, in the case of a failure of a link, the fast switchover of optical traffic onto local detours within a reduced time.
摘要:
Recovery from failure of a working path for communications traffic in a connection-oriented network, where the working path has a preplanned recovery path, involves initiating recovery by requesting computation of a new recovery path for the communications traffic to avoid the failure. If the recovery is not successful within a time limit, recovery is carried out using the preplanned recovery path. Determining if the recovery is not successful and initiating the recovery using the preplanned recovery path can be controlled by an ingress node of the working path. By trying to compute a new recovery path first, network resources can be used more efficiently, as the new recovery path is likely to reuse most of the working path, since it is computed knowing the location of the fault.
摘要:
A border node of an optical network receives optical channel traffic parameter(s) associated with an optical channel from an optical channel originator external to the optical network. The received parameters are used to determine the suitability of at least one optical path within the optical network for an externally originating optical channel. If a suitable optical path is determined, an optical channel availability message indicating the availability at the border node of an optical path within the optical network for the optical channel is sent to the optical channel originator. The optical channel originator determines an available optical channel status of the optical channel from the received optical channel availability message for the optical channel.