摘要:
A combined IEEE 1394-2000 and ethernet network allows devices to operate according to both the IEEE 1394-2000 protocol and the ethernet protocol. The devices within the network are able to send IEEE 1394-2000 isochronous data, IEEE 1394-2000 asynchronous data and ethernet data. Both IEEE 1394-2000 and ethernet devices are coupled to modified hubs (MHUBS) to form a local cluster. The MHUBS are coupled to an ethernet switch which controls communications between devices in different local clusters. The ethernet switch and the MHUBS obey an isochronous interval in which all isochronous data transfers and asynchronous data transfers from ethernet devices with an allocation of reserved bandwidth will be allowed. The ethernet switch sends a periodic isotick signal to begin the isochronous interval. Bandwidth remaining after the isochronous interval is then allocated to the IEEE 1394-2000 asynchronous traffic, until the start of the next isochronous interval.
摘要:
A combined IEEE 1394-2000 and ethernet network allows devices to operate according to both the IEEE 1394-2000 protocol and the ethernet protocol. The devices within the network are able to send IEEE 1394-2000 ischronous data, IEEE 1394-2000 asynchrounous data and ethernet data. Both IEEE 1394-2000 and ethernet devices are coupled to modified hubs (MHUBS) to form a local cluster. The MHUBS are coupled to an ethernet switch which controls communications between devices in different local clusters. The ethernet switch and the MHUBS obey an ischronous interval in which all isochronous data transfers and asynchronous data transfers from ethernet devices with an allocation of reserved bandwidth will be allowed. The ethernet switch sends a periodic isotick signal to begin the ischronous interval. Bandwidth remaining after the ischronous interval is then allocated to the IEEE 1394-2000 asynchronous traffic, until the start of the next isochronous interval.
摘要:
An automatically configuring storage array includes a plurality of media storage devices coupled together within a network of devices. Preferably, the network of devices is an IEEE 1394-2000 serial bus network of devices. The media storage devices are utilized to record and retrieve streams of data transmitted within the network of devices. The media storage devices communicate with each other in order to store and retrieve streams of data over multiple media storage devices, if necessary. When a record or playback command is received by any one of the media storage devices, the media storage devices send control communications between themselves to ensure that the stream of data is recorded or transmitted, as appropriate. Control of the record or transmit operation is also transferred between the media storage devices in order to utilize the full capacity of the available media storage devices. Preferably, streams of data are recorded utilizing redundancy techniques. An internal file system is included within each media storage device. A file table associated with each recorded stream of data is stored within the internal file system of each media storage device to facilitate search and retrieval of the recorded streams of data throughout the media storage devices. Preferably, the media storage devices accept control instructions directly from devices within the network. Alternatively, a control device is utilized to provide a control interface between the media storage devices and the other devices within the network.
摘要:
A method and system for a multi-phase net refresh on a bus bridge interconnect, the interconnect comprising a number of nodes, a bus bridge, and a number of buses, are described. In one embodiment, a primary bus is acquired by communicating with other bus bridges on the buses. A secondary bus is breached to acquire the secondary bus. In addition, the primary bus and the secondary bus are committed.
摘要:
A method and device for identifying that a 1394a node is actively attached to a 1394b network and indicating so to the 1394b network. In one embodiment, a border node first determines that a 1394a node is actively attached to the border node. Then, the border node sets a reserved bit in a self-identification packet, indicating the active presence of the 1394a node. Then, during the self-identification process, the border node transmits the self-identification packet into a 1394b network, indicating to all 1394b nodes in the 1394b network that there is a border node with an active connection to a 1394a node. Next, the 1394b nodes in the 1394b network of compliant devices alter their behavior for arbitration purposes, such that an 1394a network and a 1394b network may share a communication link.