Abstract:
Provided are a method and apparatus for encoding and decoding a datastream into which multiview image information is inserted. The method of decoding a multiview image datastream includes extracting multiview image information including information on at least one view image of a multiview image, from at least one elementary stream of the multiview image datastream; extracting a multiview image parameter regarding the multiview image based on the number of elementary streams and a correlation between view images of the multiview image; and restoring the multiview image by using the extracted multiview image parameter and the extracted multiview image information.
Abstract:
A method for controlling moving picture encoding using channel information of wireless networks is provided. By the method, it is possible to use a pre-verified standard technology in the prescription of a stereoscopic image file format, thereby simplifying a verification procedure for a new standard. Also, it is possible to use a new a stereoscopic image file format, thereby selecting, generating, and reproducing either of a 2D image file or a 3D stereoscopic image file. In particular, according to a system and a method for using a file format used to generate a 3D stereoscopic image, it is possible to reproduce and display a caption in the form of a 2D image during reproduction of the 3D stereoscopic image, thereby reducing eyestrain of a user, and additionally providing an image such as news, or an advertisement, to a user.
Abstract:
A method and apparatus for generating a stereoscopic file defined based on a conventional International Standardization Organization (ISO) based media file format. The apparatus includes an encoder encoding first video data and second video data that are included in three-dimensional (3D) video data; and a file generating unit arranging the encoded first video data and second video data according to the information of a stereoscopic file format including boxes that are selected from boxes included in a conventional International Standardization Organization (ISO) based media file format in order to store and generate the stereoscopic file, and generating the stereoscopic file.
Abstract:
Disclosed are a system and a method for generating and regenerating three-dimensional (3D) images file based on two-dimensional (2D) image media standards, a 3D image file generating device for generating a 3D image file having a data area, which includes first image data and second image data synchronized with the first image data so as to be used for generating a 3D image, a header area including information of the first image data, and a metadata area including information of the second image data, and a 3D image file regenerating device, which parses information of the first and the second image data when a 3D image file is inputted so as to synthesize and regenerate the first and the second image data into a 3D image file.
Abstract:
An apparatus and a method for processing a stereo image are provided. In the method, a first image and a second image are obtained via a first camera module and a second camera module installed spaced by a predetermined distance. When the stereo image is captured, the first image and the second image are alternatively sampled with a predetermined time interval. The sampled at least one first image and the sampled at least one second image are encoded. Therefore, the stereo image can be compressed with low complexity compared to the case of compressing a stereo image using a 2D image compression technology.
Abstract:
Provided are a method and apparatus for encoding and decoding a datastream into which multiview image information is inserted. The method of decoding a multiview image datastream includes extracting multiview image information including information on at least one view image of a multiview image, from at least one elementary stream of the multiview image datastream; extracting a multiview image parameter regarding the multiview image based on the number of elementary streams and a correlation between view images of the multiview image; and restoring the multiview image by using the extracted multiview image parameter and the extracted multiview image information.
Abstract:
A method for providing stereoscopic three-dimensional (3D) image/video content in a terminal based on Lightweight Application Scene Representation (LASeR) is provided. The method includes receiving a LASeR content including therein stereoscopic 3D image/video information, decoding the received LASeR content according to a stereoscopic 3D image/video attribute, checking LASeR commands from the decoded LASeR content, carrying out the LASeR commands, parsing scene information including stereoscopic 3D image/video information included in the decoded LASeR content, determining whether a media object to be included in scene description is a stereoscopic 3D image/video according to the stereoscopic 3D image/video information and, when the media object to be included in scene description is a stereoscopic 3D image/video, displaying the stereoscopic 3D image/video according to whether the terminal supports a stereoscopic 3D image/video.
Abstract:
Provided are a method and apparatus for encoding and decoding a stereoscopic image. A stereoscopic image restoring method includes parsing a received data stream into image data of a stereoscopic image and information regarding the stereoscopic image; extracting a camera parameter depending on individual characteristics of each of one or more cameras which have captured the stereoscopic image; and decoding and restoring the image data of the stereoscopic image.
Abstract:
A computer readable medium having data stored thereon is provided. A structure of the data includes a media data box including two or more media data, and a movie data (‘moov’) box including information on view sequence data in the media data. The ‘moov’ box includes track reference information indicating that a track box for one view sequence references a track box of another view sequence.
Abstract:
A plurality of video input units generate video frames and provide shooting characteristics. A 3D video frame generator creates a 3D video frame by combining a plurality of video frames, which are provided from the plurality of video input units, respectively, and provides 3D video frame composition information indicating a composition type of the plurality of video frames included in the 3D video frame, and resolution control information indicating adjustment/non-adjustment of resolutions of the video frames. A 3D video frame encoder outputs an encoded 3D video stream by encoding the 3D video frame provided from the 3D video frame generator. A composition information checker checks 3D video composition information including the shooting information, the 3D video frame composition information, and the resolution control information. A 3D video data generator generates 3D video data by combining the 3D video composition information and the encoded 3D video stream.