Abstract:
A semiconductor laser device (5) comprising at least one semiconductor laser chip (7) is provided, wherein the semiconductor laser chip (7) contains an active layer that emits electromagnetic radiation. Further, at least one corner reflector (1) is formed in the semiconductor laser chip (7). The corner reflector (1) has a first and a second reflective surface (14, 15), wherein the first and the second reflective surface (14, 15) are arranged at an angle of less than 90 degrees with respect to one another. This results in an improved emission characteristic of the radiation emitted by the semiconductor laser device (5).
Abstract:
The invention relates to a process for preparation, under reducing conditions, of cooking liquors having high sulphidity for sulphate pulp cooking, wherein the black liquor obtained in the cooking process is fed, after evaporation, completely or partly to a reactor operating at increased temperature which is obtained by energy supply from an external heat source and/or release of energy from the black liquor, a melt essentially consisting of sodium sulphide being formed and withdrawn to be further processed to cooking liquor. The process of the invention is characterized in that in addition there are fed to the reactor the whole or part of sulphur-containing and/or sulphur- and sodium-containing materials present in the pulp mill, including sulphur-containing and/or sodium- and sulphur-containing make-up chemicals used for the total chemicals balance of the pulp mill, in such a way that the mole ratio of sodium to sulphur in the total mixture fed to the reactor is within the range of 1.5 to 4. According to a preferred embodiment of the invention there is used an aqueous solution of the sodium sulphide melt obtained in so-called modified sulphate cooking.
Abstract:
An edge-emitting semiconductor laser includes a first waveguide layer, into which an active layer that generates laser radiation is embedded. The laser also includes a second waveguide layer, into which no active layer is embedded. The laser radiation generated in the active layer forms a standing wave, which has respective intensity maxima in the first waveguide layer and corresponding intensity minima in the second waveguide layer and respective intensity minima in the first waveguide layer and corresponding intensity maxima in the second waveguide layer at periodic intervals in a beam direction of the semiconductor laser. An at least regionally periodic contact structure is arranged at a surface of the edge-emitting semiconductor laser. A period length of the contact structure is equal to a period length of the standing wave, such that the semiconductor laser has an emission wavelength that is set by the period length of the contact structure.
Abstract:
A ball nose end mill comprises a body having a semi-spherical front surface and a plurality of indexable cutting inserts. A central one of the inserts is of generally triangular shape, and the additional inserts are of generally rectangular shape. The central insert has a generally convexly curved top surface, and the cutting edges thereof include main cutting edges which are convexly curved when the central insert is viewed from the side.