Abstract:
Systems and methods for effectuating a signal carrier configuration are disclosed. In one embodiment, the method comprises receiving an order, determining a signal carrier on which the order was received, determining a signal carrier configuration based at least in part on the order and the determined signal carrier, and changing the state of one or more signal carriers to effectuate the signal carrier configuration.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may receive at least one bit indicating a particular set of control symbols, of a plurality of sets of control symbols, comprising a downlink control region identify a location of a demodulation reference signal (DMRS), associated with a data channel, based at least in part on the at least one bit indicating the particular set of control symbols comprising the downlink control region; and communicate on the data channel based at least in part on the DMRS. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may receive at least one bit indicating a particular set of control symbols, of a plurality of sets of control symbols, comprising a downlink control region identify a location of a demodulation reference signal (DMRS), associated with a data channel, based at least in part on the at least one bit indicating the particular set of control symbols comprising the downlink control region; and communicate on the data channel based at least in part on the DMRS. Numerous other aspects are provided.
Abstract:
User Equipments (UEs) can be adapted to enter into a lower RRC state from a higher RRC state, and search for one or more layers of higher priority within a predetermined period of time upon entering into the lower RRC state. According to at least one aspect, this search for one or more layers of higher priority may be performed irrespective of RF quality of a current serving cell. According to at least another aspect, this search for one or more layers of higher priority may be conducted within the predetermined period of time if a wait period has elapsed since the UE camped on the current serving cell. If the wait period has not elapsed since camping on the current serving cell, the search for one or more layers of higher priority may be performed within the predetermined period of time following a duration of the wait period.
Abstract:
A wireless communication device includes: an antenna for receiving inbound signals on dual receive channels and transmitting outbound signals on dual transmit channels; a transceiver coupled to the antenna to receive the inbound signals from the antenna and convey the outbound signals; a power controller coupled to the transceiver to control power levels of the outbound signals so a maximum nominal power level of the outbound signals is a first power level; and a processor coupled to the transceiver and the antenna to cause the power controller to control the power levels of the outbound signals so if a power level of a received one of the inbound signals is below a threshold value, then the maximum nominal power level of the outbound signals is a second power level lower than the first power level, wherein the second power level is lower than the first power level.
Abstract:
Apparatus and methods that provide wireless communications, where a method for wireless communications includes receiving at a Node B a first set of bits indicating at least two frequency bands supported by a UE for HSDPA, the first set of bits further specifying a number of downlink adjacent carriers supported by the UE for each of the at least two frequency bands. The method also includes transmitting a first set of bits indicating support for a set of carriers for each band, the information comprising information related to a maximum channel bandwidth supported for that band; and transmitting a second set of bits indicating a configuration for the set of carriers under which multiple uplinks will be supported.
Abstract:
A wireless communication device includes: an antenna for receiving inbound signals on dual receive channels and transmitting outbound signals on dual transmit channels; a transceiver coupled to the antenna to receive the inbound signals from the antenna and convey the outbound signals; a power controller coupled to the transceiver to control power levels of the outbound signals so a maximum nominal power level of the outbound signals is a first power level; and a processor coupled to the transceiver and the antenna to cause the power controller to control the power levels of the outbound signals so if a power level of a received one of the inbound signals is below a threshold value, then the maximum nominal power level of the outbound signals is a second power level lower than the first power level, wherein the second power level is lower than the first power level.
Abstract:
Systems and methodologies are described that facilitate synthesizing a single baseband waveform from digital signals related to multiple carriers. Digital signals can be received relating to a plurality of carriers. The digital signals can result from spreading data symbols from transport blocks to create chip sequences, which can additionally be pulse shaped. The digital signals can be rotated in a positive or negative direction, such as according to a complex sinusoid or a negative representation thereof. The rotated signals can be combined or added to generate a single baseband waveform. The single baseband waveform can be converted to an analog signal, which can be up-converted and centered at a plurality of frequency carriers, which can be adjacent, assigned for transmitting the signal. In addition, optimizations can be provided to ensure threshold power ratio over the plurality of carriers for effectively transmitting jointly encoded signals.