Abstract:
A microscope objective includes: a plurality of optics sharing an optical axis, a plurality of optics frames holding at least one of the plurality of optics, an objective lens barrel with a plurality of holes penetrating the side wall of the objective lens barrel in which the plurality of optics frames are sequentially stacked; and a metal shim arranged between surfaces which are stacked with each optics frames. With the configuration, the metal shim is inserted from the holes penetrating the objective lens barrel.
Abstract:
The present invention makes an objective lens easier to handle during disinfection or sterilization and protects the objective lens during, for example, transport, storage, or handling. The present invention provides an objective-lens protector including a substantially ring-shaped mounting portion surrounding a circumference of an objective lens, the mounting portion detachably mounted on the objective lens such that a threaded mount formed on the objective lens for mounting the objective lens to a microscope main body is exposed; a protecting member fixed to the mounting portion, extending substantially along the entire length of the objective lens mounted on the mounting portion, and arranged at a distance outwardly in a radial direction of the objective lens so as to surround the objective lens; and a locking mechanism provided on the mounting portion to prevent the objective lens from moving relative to the mounting portion in a circumferential direction.
Abstract:
In a method of forming a colored layer on a microlens substrate according to the present invention, a colored layer 4 is formed on troughs 32 between adjacent microlenses 3 by applying a liquid 42 for forming a colored layer 4 with fluidity onto the side of the microlens substrate 1 where the microlenses 3 are provided, and then hardening the applied liquid 42 to form a colored layer 4 in the troughs 32. A colored dispersion liquid in which a dispersoid is dispersed in a dispersion medium is suitably used as the liquid 42. It is preferable that the liquid 42 for forming a colored layer 4 has a coefficient of viscosity of 500 cP or less at a temperature of 25° C.
Abstract:
To provide a micro-lens substrate wherein a higher contrast ratio can be obtained when used in a liquid crystal panel and the like. A micro-lens substrate 1A includes a first substrate 2 with concaves for microlenses having a plurality of first concaves 31 and first aligment marks 71 formed on a first glass substrate 29, a second substrate 8 with concaves for microlenses having a plurality of second concaves 32 and second aligment marks 72 formed on a second glass substrate 89, a resin layer 9, microlenses 4 consisting of doulbe convex lenses formed of a resin filled in between the first and second concaves 31 and 32, and spacers 5.
Abstract:
A biological information detector including a light-emitting part for emitting a light directed at a detection site of a test subject, a light-receiving part for receiving a light having biological information, the light produced by the light emitted by the light-emitting part being reflected at the detection site, a reflecting part for reflecting the light emitted by the light-emitting part or the light having biological information, a protecting part, having a transparent surface in contact with the test subject, for protecting the light-emitting part or the light-receiving part, and a substrate held between the reflecting part and the protecting part, the light-emitting part being positioned on a side of the substrate towards one of either the reflecting part or the protecting part, and the light-receiving part being positioned on a side of the substrate towards another of either the reflecting part or the protecting part.
Abstract:
A biological information detector includes a light-emitting part subjected to emit a first light directed at a detection site of a test subject and a second light directed in a direction other than a direction of the detection site, a first reflecting part subjected to reflect the second light and directing the second light towards the detection site, a light-receiving part subjected to receive light having biological information, where the light produced by the first light and the second light is reflected at the detection site, and a second reflecting part subjected to reflect the light having biological information from the detection site and directing the light having biological information towards the light-receiving part.
Abstract:
To reduce the effect of directly reflected light on a contact-surface side of a contact member, a biological information detector includes a light-emitting part, a light-receiving part, a reflecting part, a protecting part for protecting the light-emitting part, and a substrate. The protecting member is formed from a material that is transparent with respect to a wavelength of the light emitted by the light-emitting part and has a contact member provided with a contact surface in contact with the detection site. Light emitted from the light-emitting part is inhibited from reflecting once on a contact-surface side of the contact member of the protecting part and being incident on a light-receiving region of the light-receiving part.
Abstract:
A biological information detector includes a first sensor unit for detecting composite information including biological information of a test subject and first noise information originating in external light, having a first light-emitting part for emitting toward there, a first light-receiving part for receiving it including the biological information, reflected there, and the light including the first noise information obtained from the external light, transmitted through there, and a first reflecting and leading part for reflecting the light including the biological and the first noise information, leading it to the first light-receiving part, and a second sensor unit for detecting second noise information originating in the external light, having a second light-receiving part for receiving the light including the second noise information, obtained from the external light and transmitted through there, and a second reflecting, leading part for reflecting the external light and leading it to the second light-receiving part.
Abstract:
A microscope objective lens in which a tip and a circumferential portion of a barrel having a plurality of lenses are processed to seal off an inner space containing the plurality of lenses from the outside. The objective lens includes a sealing member that seals a gap between a cap and the barrel when the cap is placed over a rear end portion of the barrel so as to cover an opening formed at the rear end portion.
Abstract:
A transmissive screen is provided that controls moire pattern occurrence to prevent the degradation of image quality. The transmissive screen includes a Fresnel lens sheet having a Fresnel lens unit and a microlens array sheet having a microlens unit that are placed opposite to each other. Projected images enter from one side of the screen and are displayed on the other side of the screen, assuming that the lens pitch on one side of the microlens unit is P, the lens pitch of the Fresnel lens unit is Pf, and the pixel-frame pitch projected on the screen is Pb, the following expressions are satisfied: P≠Pb·Pf/(Pb+Pf); P≠Pb·Pf/2×(Pb+Pf); and P≠Pb·Pf/2×(Pb−Pf).