Abstract:
Phosphor layers (110G, 110B, and 110R) are made of combination of: blue and green phosphors that are positively charged on their surfaces and baked in an oxygen-nitrogen atmosphere to reduce oxygen vacancy, and have a β-alumina crystal structure; and a red phosphor made of an yttrium oxide compound. Uniformly forming such phosphor layers on the wall surfaces of barrier ribs (109) provides equal charge characteristics of the phosphors of respective colors, reduces oxygen vacancy in the phosphors, and inhibits adsorption of various gases in the panel production process. This can stabilize the discharge characteristics and prevent luminance degradation at driving the panel.
Abstract:
In a phosphor whose host crystal is constituted of an oxide, a method of preparing the phosphor where the oxygen deficiencies in the phosphor are not many, and a plasma display device using the same are provided. After processes of weighing, mixing and filling powders of the phosphor, a process for firing in a reducing atmosphere and a process for firing in an oxidizing atmosphere after the last reducing atmosphere process are provided. In addition, a firing temperature in the oxidizing atmosphere process is not less than 600° C. and not more than 1000° C.
Abstract:
The present invention provides a plasma display panel that suppresses discharge sustain voltage, and reduces brightness degradation of a phosphor. In the plasma display panel, as protective film (14) made of magnesium oxide (MgO) formed on dielectric glass layer (13), protective film (14) made of magnesium oxide (MgO) with oxide added with an electronegativity of 1.4 or higher, is formed to suppress impure gas adsorption by protective film (14), stabilizes discharge sustain voltage, and reduces brightness degradation.
Abstract:
Fine particles of a phosphor are weighed, mixed, and filled. Provided after this step are at least one step of firing the particles in a reducing atmosphere, and a step of pulverizing, dispersing, rinsing, drying and then treating the particles in an ozone atmosphere after the last step of treatment in the reducing atmosphere. This method recovers oxygen vacancy in the host crystal of the phosphor.
Abstract:
Fine particles of a phosphor are weighed, mixed, and filled. Provided after this step are at least one step of firing the particles in a reducing atmosphere, and a step of pulverizing, dispersing, rinsing, drying and then performing oxygen ion implantation treatment for implanting oxygen ions and annealing the particles, after the step of treatment in the reducing atmosphere. This method recovers oxygen vacancy in the host crystal of the phosphor.
Abstract:
The preresent invention provides a plasma display panel that suppresses discharge sustain voltage, and reduces brightness degradation of a phosphor. In the plasma display panel, as protective film (14) made of magnesium oxide (MgO) formed on dielectric glass layer (13), protective film (14) made of magnesium oxide (MgO) with oxide added with an electronegativity of 1.4 or higher, is formed to suppress impure gas adsorption by protective film (14), stabilizes discharge sustain voltage, and reduces brightness degradation.
Abstract:
Fine particles of a phosphor are weighed, mixed, and filled. Provided after this step are at least one step of firing the particles in a reducing atmosphere, and a step of pulverizing, dispersing, rinsing, drying and then treating the particles in an oxygen plasma atmosphere after the last step of treatment in the reducing atmosphere. This method recovers oxygen vacancy in the host crystal of the phosphor.
Abstract:
A plasma display device including a green phosphor of which brightness is hardly deteriorated and a production method therefore are disclosed. The plasma display device comprises a plasma display panel in which a plurality of discharge cells of one color or a plurality of colors are disposed, red phosphor layers 110R, green phosphor layers 110G, and blue phosphor layers 110B are arranged correspondingly to the respective discharge cells, and the red phosphor layers 110R, the green phosphor layers 110G, and the blue phosphor layers 110B are excited by ultraviolet rays to emit light. The green phosphor layers 110G include a green phosphor expressed by (Ma-x-yEuxTby)O.MgO.2SiO2 (here, M is at least one element selected from Ca, Sr, and Ba).
Abstract translation:一种等离子体显示装置,其包括亮度几乎不劣化的绿色荧光体及其制造方法。 等离子体显示装置包括:等离子体显示面板,其中配置有多种颜色或多种颜色的放电单元,红色荧光体层110R,绿色荧光体层110G和蓝色荧光体层110B对应于 各个放电单元和红色荧光体层110R,绿色荧光体层110G和蓝色荧光体层110B被紫外线激发以发光。 绿色荧光体层110G包括由(M a a x N y O x Sb y O)O m O 2 SiO 2表示的绿色荧光体 (这里,M是选自Ca,Sr和Ba中的至少一种元素)。
Abstract:
Fine particles of a phosphor are weighed, mixed, and filled. Provided after this step are at least one step of firing the particles in a reducing atmosphere, and a step of pulverizing, dispersing, rinsing, drying and then treating the particles in an oxygen plasma atmosphere after the last step of treatment in the reducing atmosphere. This method recovers oxygen vacancy in the host crystal of the phosphor.
Abstract:
A plasma display device includes a blue phosphor composed of a compound represented by Me3MgSi2O8:Eu (where, Me is at least calcium (Ca), strontium (Sr), or barium (Ba)). Concentration of bivalent Eu ions is 45 to 95% and concentration of trivalent Eu ions is 5 to 55%, of the europium (Eu) atoms contained in the blue phosphor layer. The plasma display device has less luminance degradation in a panel manufacturing process, high luminance, and long lifetime.