Abstract:
A system and method configured to measure applied force and pressure on a load cell. The system includes an axial force pressure transducer having a hollow cross section comprising at least two strain sensitive regions, and a plurality of strain sensors connected to the at least two strain sensitive regions, wherein applied force and pressure is calculated based on strain measurements using mathematical formulae. A method of calibration of the axial force pressure transducer using known applied force and pressure measurements to calculate a calibration matrix reflecting the strain sensitivities of the at least two strain sensitive regions.
Abstract:
Floor coverings, such as modular panels or tiles, for installation on interior surfaces include an upper wear layer and a backing layer, where the backing layer includes a filler that includes concentrated carbon. The floor coverings can sequester carbon such that the resulting product has a negative carbon footprint when subjected to a Life Cycle Assessment.
Abstract:
Tools are provided that communicate to a pattern designer how much yarn is being used on every needle for a given tuft height pattern and permit the designer to adjust the pattern accordingly to balance the yarn usage on the needles. An electronic representation of a pattern design is received for controlling a carpet tufting operation. The pattern design includes a pile height per tuft. A grid is provided for representing the pattern design using different visual cues to represent different pile heights. A graph depicting use-of-yarn per needle for the carpet tufting operation is generated. The grid and the graph can be on a common user interface and can be viewable at the same time on a display device.
Abstract:
Tools are provided that communicate to a pattern designer how much yarn is being used on every needle for a given tuft height pattern and permit the designer to adjust the pattern accordingly to balance the yarn usage on the needles. An electronic representation of a pattern design is received for controlling a carpet tufting operation. The pattern design includes a pile height per tuft. A grid is provided for representing the pattern design using different visual cues to represent different pile heights. A graph depicting use-of-yarn per needle for the carpet tufting operation is generated. The grid and the graph are on a common user interface and are viewable at the same time on a display device.
Abstract:
A floor covering system can include sensors below a top surface of a floor covering and that can communicate data to a controller for monitoring events occurring in the room with the floor covering. The sensors can include a wireless transmitter associated with a tile connector, a pressure sensor, and a force sensor. The tile connector is positioned between a floor and a floor covering to connect tiles of the floor covering together. The pressure sensor is positioned between the floor and the floor covering. The force sensor is positioned between the floor and the floor covering. The controller is configured for receiving data from the pressure sensor, the wireless transmitter, and the force sensor.
Abstract:
Design and manufacture of tufted articles, carpet tile webs and carpet tiles, and installation of carpet tiles, having different color, pile height, pile texture or other characteristics that, together with similar other such tiles, may be installed to create borders, edges or other multiple-tile designs, usually without any of the tiles looking out of place or improperly oriented relative to nap or the direction the tile is “facing.”
Abstract:
Floor coverings, such as modular panels or tiles, for installation on interior surfaces include one or more layers, for example, an upper wear layer and a backing layer, where at least one layer includes a filler that includes a carbon negative material, such as concentrated carbon. The carbon negative material can sequester carbon such that the resulting floor covering has a negative carbon footprint when subjected to a Life Cycle Assessment.
Abstract:
Certain aspects and features relate to using an image modifier to generate digital designs and to printing the digital designs on a structure for flooring or other decoration that can more realistically mimic designs found in nature or otherwise provide designers with the freedom to create aesthetic designs more easily. An image modifier can receive an image, such as an image of a naturally occurring view and generate modified designs based on the image. The modified designs can be slight modifications to the image and printed on the structures for flooring such that together the printed structures exhibit the appearance of a design found in nature or a desired appearance by a designer.
Abstract:
Certain aspects and features relate to using an image modifier to generate digital designs and to printing the digital designs on a structure for flooring or other decoration that can more realistically mimic designs found in nature or otherwise provide designers with the freedom to create aesthetic designs more easily. An image modifier can receive an image, such as an image of a naturally occurring view and generate modified designs based on the image. The modified designs can be slight modifications to the image and printed on the structures for flooring such that together the printed structures exhibit the appearance of a design found in nature or a desired appearance by a designer.
Abstract:
Connectors for joining adjacent modular floor covering units. The connectors include a film and an adhesive layer coated on one side of the film. To install tiles using the connectors, a first tile is placed on the floor and a connector is positioned so that the adhesive layer faces upward and does not contact the floor. The connector is typically positioned so that only a portion of the adhesive layer adheres to the underside of the tile, leaving the remainder of the connector extending from the underside of the tile. Tiles are then positioned adjacent the first tile so that a portion of the connector adheres to the adjacent tiles. In this way, the connectors span adjacent tile edges. The tiles are assembled on a underlying flooring surface without the need to attach them to the floor surface. Rather, the tiles are linked to each other with the connectors, so that the tiles create a floor covering that “floats” on the underlying floor surface.