Abstract:
An electrostatic discharge (ESD) protection structure and a method for forming the same are provided. The structure includes a substrate having a buried layer, and a first and a second high-voltage well region on the buried layer. The first and second high-voltage well regions have opposite conductivity types and physically contact each other. The structure further includes a field region extending from the first high-voltage well region into the second high-voltage well region, a first doped region in the first high-voltage well region and physically contacting the field region, and a second doped region in the second high-voltage well region and physically contacting the field region. The first and second doped regions and the first high-voltage well region form a bipolar transistor that can protect an integrated circuit from ESD.
Abstract:
A high voltage p-type metal oxide semiconductor (HVPMOS) device having electrostatic discharge (ESD) protection functions and a method of forming the same are provided. The HVPMOS includes a PMOS transistor, wherein the PMOS transistor comprises a first source/drain region doped with a p-type impurity in a high voltage p-well (HVPW) region, a second source/drain region doped with a p-type impurity in a high voltage n-well (HVNW) region wherein the HVPW region and HVNW region physically contact each other, a field region substantially underlying a gate dielectric, and a first heavily doped n-type (N+) region in the HVPW region and contacting the first source/drain region. The device further includes an N+ buried layer underlying the HVPW region and the HVNW region and a p-type substrate underlying the N+ buried layer. The device has robust performance for both forward and reverse mode ESD.
Abstract:
A bonding pad structure and fabrication method thereof. A bonding pad is substantially surrounded and insulated by a dielectric layer, wherein the bonding pad is formed of at least one first conductive layer having a wiring layer with a stripe layout and a first edge portion, a second conductive layer having a wire bonding portion and a second edge portion and a plurality of plugs electrically connecting the wiring layer and the wire bonding portion. A conductive structure of an array of metal plugs or a metal damascene structure is formed to connect the first edge portion and the second edge portion, thereby preventing burn out of the first edge portion during an ESD event.
Abstract:
An electrostatic discharge (ESD) protection circuit is provided for use in an integrated circuit (IC) to provide protection against an ESD on a contact pad of the IC. The IC includes a driver circuit. The ESD protection circuit is connectable to a first power supply voltage and includes an ESD protection device connectable between the contact pad and the first power supply voltage and a capacitor connectable between the contact pad and the driver circuit.
Abstract:
A method is disclosed for enhancing ESD protection of integrated circuit devices. The method entails placing a resistor between an I/O pad and an ESD protection device on a semiconductor chip so that one end of the resistor connects to pins on said I/O pad and the other end connects to the ESD protection device.
Abstract:
A system and method is disclosed for implementing a new bipolar-based silicon controlled rectifier (SCR) circuit for an electrostatic discharge (ESD) protection. The SCR circuit comprises a bipolar device to be formed on a semiconductor substrate. The bipolar device comprises at least an N-well for providing a high resistance and a P+ material to be used as a collector thereof for further providing a high resistance. At least an Nmoat guard ring and a Pmoat guard ring surround the bipolar device, wherein when an ESD event occurs, the high resistance provided by the N-well and the P+ material of the bipolar device increases a turn-on speed.
Abstract:
This invention provides two circuit embodiments for a whole chip electrostatic discharge, ECD, protection scheme. It also includes a method for whole chip ESD protection. This invention relates to distributing the circuit of this invention next to each input/output pad in order to provide parallel ESD current discharge paths. The advantage of this invention is the ability to create a parallel discharge path to ground in order to discharge the damaging ESD current quickly so as to avoid circuit damage. The two circuit embodiments show how the protection circuits of this invention at both the unzapped I/O pads and the zapped I/O pad are connected in a parallel circuit for discharging ESD currents quickly. These protection embodiments require a small amount of semiconductor area, since the smaller protection circuits are distributed and placed at the locations of each I/O pad.
Abstract:
A semiconductor structure for electrostatic discharge protection is presented. The semiconductor structure comprises a grounded gate nMOS (GGNMOS) having a substrate, a gate electrode, a source region and a drain region. A plurality of contact plugs is formed on the source and drain side. A plurality of first level vias is electrically coupled to the GGNMOS and has a substantially asymmetrical layout in the source and drain regions. A second level via(s) re-routes the ESD current to the desired first level vias. The uniformity of the current flow in the GGNMOS is improved.
Abstract:
A bonding pad structure and fabrication method thereof. A bonding pad is substantially surrounded and insulated by a dielectric layer, wherein the bonding pad is formed of at least one first conductive layer having a wiring layer with a stripe layout and a first edge portion, a second conductive layer having a wire bonding portion and a second edge portion and a plurality of plugs electrically connecting the wiring layer and the wire bonding portion. A conductive structure of an array of metal plugs or a metal damascene structure is formed to connect the first edge portion and the second edge portion, thereby preventing burn out of the first edge portion during an ESD event.
Abstract:
A decoupling capacitor with increased resistance to electrostatic discharge (ESD) is provided on an integrated circuit (IC). The capacitor may be single or multi-fingered. In one example, the capacitor includes first and second electrodes separated by a dielectric material, a source positioned proximate to the first electrode, and a floating drain positioned proximate to the first electrode and separated from the source by the first electrode. A parasitic element, modeled as a bipolar junction transistor (BJT), is formed by current interactions between the source, the floating drain, and a doped area. The floating drain provides a constant potential region at the base of the BJT, which minimizes ESD damage to the IC.