Abstract:
Disclosed are cis-2,6-disubstituted tetrahydropyran derivatives represented by Chemical Formula 1 and a preparation method thereof. The tetrahydropyran derivatives can be prepared by Prins-reacting tetrahydropyran derivatives with homopargylicalcohol derivatives in the presence of trimethylsilyltriflate. The tetrahydropyran derivatives with cis-substituents at both C2 and C6 positions of the tetrahydropyran ring are useful as intermediates for use in the synthesis and development of therapeutically effective, naturally occurring compounds. (wherein, R1, R2 and R3 are as defined in the specification.)
Abstract:
A liquid crystal display device is disclosed. The disclosed liquid crystal display device includes gate lines, data lines formed to intersect with the gate lines, thereby defining sub-pixel regions, vertical common lines formed in parallel to the data lines such that at least one vertical common line is arranged for one pixel region, which is constituted by at least three sub-pixel regions, thin film transistors each connected to a corresponding one of the gate lines and a corresponding one of the data lines, pixel electrodes each connected to a corresponding one of the thin film transistors, and common electrodes each connected to a corresponding one of the vertical common lines.
Abstract:
The present invention shows that an in-plane switching mode LCD and a method for fabricating the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.To achieve the purpose of the present invention, an in-plane switching mode LCD according to the present invention having a plurality of pixels arranged in a matrix includes a gate line formed on a lower substrate, a data line formed such that the data line intersect the gate line to define a pixel region, a TFT (Thin Film Transistor) formed at the intersection of the gate line and the data line, a pixel electrode connected to the TFT, a common electrode to generate a horizontal electric field with the pixel electrode, and a common line supplying common voltage to the common electrode, wherein the common line comprises a first common line formed parallel to the gate line in a lower portion of the pixel region, a second common line formed parallel to the date line in a side portion of the pixel region adjacent to the data line, and a third common line formed parallel to the gate line in a upper portion of the pixel region, and wherein the data line comprises a pair of sub-lines facing directly with each other in every two pixel regions.As above described, the present invention has an effect of increasing aperture ration by a data line comprising a pair of sub-lines disposed in every two sub-pixels
Abstract:
A liquid crystal display device having thin film transistors arranged in a zigzag pattern at opposite sides of a gate line, and method for fabricating the same to prevent occurrence of a Cgd variation, even when gate lines or data lines are misaligned in Y- or Z-axis direction, and a defective interface caused by stitching. The device includes a plurality of gate lines arranged on a substrate in one direction, a plurality of data lines substantially perpendicular to the gate lines to define pixel regions, and one pair of thin film transistors per pixel region, the pair of thin film transistors including one pair of first and second gate electrodes projected from the gate lines, a drain electrode substantially parallel to the gate lines, having opposite ends overlapping the first and second gate electrodes, and a source electrode projected from the data lines so as to be adjacent to the opposite ends of the drain electrode and overlap the first and second gate electrodes.
Abstract:
The present invention relates to a novel algorithm that uses molecular profile signatures to extrapolate the physiological processes of one type of cell set (e.g., cell line, tissue, normal or diseased) to predict the activity of an agent or agents against another type of cell set that has never been exposed to the agent in question (drug efficacy prediction). The novel algorithm also allows one to predict the therapeutic response of a patient to a therapeutic regimen even though the patient (or patients) may have never been exposed to that agent before, thereby allowing for selecting a therapeutic agent or combination of agents that would best suit the patient (i.e., personalized medicine). The present invention also relates to methods of using the agents identified by the novel algorithm to treat a variety of diseases, including cancer.
Abstract:
An array substrate device for a liquid crystal display device includes a substrate, a gate line extending along a first direction on the substrate, a data line extending along a second direction substantially perpendicular to the first direction on the substrate, a pixel region defined by a crossing of the gate and data lines, a common line extending along the first direction and spaced apart from the gate line, a common electrode having a plurality of first portions extended along the second direction from the common line to the pixel region, wherein the extended portion of the common electrode adjacent to the data line includes first and second extensions overlapping portions of the data line, a thin film transistor on the substrate at a crossing portion of the gate and data lines, the thin film transistor including source and drain electrodes, a pixel electrode extended from the drain electrode to the pixel region, and an auxiliary electrode connected to the extended portion of the common electrode adjacent to the data line.
Abstract:
In the method of fabricating a TFT in accordance with the present invention, a first semiconductor layer 37 to be used as a channel is formed on a portion of an insulating layer 35 in correspondence with an underlying gate electrode 33. A second semiconductor layer 34, ohmic contact layer 41 and metal layer 45 are then successively formed on the insulating layer 35 and first semiconductor layer 37. A photoresist pattern is next formed on a portion of the ohmic contact layer other than a portion corresponding to the gate electrode. The metal layer is patterned using the photoresist pattern to form source 43 and drain 45 electrodes, and the ohmic contact layer 41 and second semiconductor layer 39 are removed using the photoresist pattern as a mask, or using the source and drain electrodes as a mask, to expose portions of the insulating layer and first semiconductor layer. A passivation layer 47 is formed to cover the insulating layer, first semiconductor layer, and source and drain electrodes. A contact hole 49 is formed in the passivation layer, followed by formation of a pixel electrode 51 in electrical contact with the drain electrode through the contact hole.
Abstract:
A hybrid switching mode liquid crystal display device according to the present invention comprises first and second substrates, a gate bus line and a transparent data bus line defining unit pixel region, a common line parallel to a gate bus line in the pixel region, a TFT on the cross of a data bus line and the gate bus lines in the pixel region, a common electrode and a storage capacitor line in the pixel region, a gate insulator having holes on the gate bus line, the common electrode, and the storage capacitor lines, a passivation layer having holes on the gate insulator, a first alignment layer with a fixed alignment direction on the passivation layer, at least one counter electrode on the second substrate applying vertical and inclined electric fields with the common and data electrodes on the first substrate, a black matrix on the counter electrodes to prevent light leakage which may be generated around TFT, the gate bus lines, and the data bus lines, a color filter layer on the black matrix and the second substrate, a second alignment layer on the color filter layer, and a liquid crystal layer between the first and second substrates.
Abstract:
A TFT type optical detecting sensor includes a sensor TFT for generating optical current by detecting light reflected from an object, a storage capacitor for storing charges of the optical current, and a switching TFT for controlling releasing of the charges stored in the storage capacitor. The storage capacitor is made of a transparent conductive material, such that light is transmitted from a light source through the storage capacitor to the object.
Abstract:
Disclosed are cis-2,6-disubstituted tetrahydropyran derivatives represented by Chemical Formula 1 and a preparation method thereof. The tetrahydropyran derivatives can be prepared by Prins-reacting tetrahydropyran derivatives with homopargylicalcohol derivatives in the presence of trimethylsilyltriflate. The tetrahydropyran derivatives with cis-substituents at both C2 and C6 positions of the tetrahydropyran ring are useful as intermediates for use in the synthesis and development of therapeutically effective, naturally occurring compounds. (wherein, R1, R2 and R3 are as defined in the specification.).