Abstract:
A housing frame preferably formable as a single integral unit and being capable of use as a primary structural portion of a housing suitable for multiple exit sign configurations, the several exit sign configurations of the invention being either intended for emergency or non-emergency operation and further being intended for use with different light sources and power sources. The housing frame of the invention includes structural features which allow mounting of any one of a variety of light sources and mounting of those components necessary for operation of the light sources within a single housing, which housing is of a size reduced in volume relative to most presently available signs. Structural features of the frame also include in at least certain embodiments a printed circuit board comprising a platform and having essentially all circuit components including light emitting diode light sources and a battery for operation of the light sources in an emergency mode mounted on said printed circuit board. The printed circuit board or platform is mounted immediately above a floor of the housing frame by a support structure comprising an irregular vertical wall extending upwardly from the floor of the housing frame. The frame and associated plates forming the housing of the invention are preferably formed from polymeric material of a thickness less than that of prior "plastic" housings, the strength and rigidity necessary to proper operation of the housing being provided by a functionally interrelated combination of structural elements which allows a substantial reduction in material used for formation of the housing.
Abstract:
A lighting device comprising at least a first light source and at least one heat sink element that is removable, that comprises an first inner region and an first outer region, that is identical in shape to another heat sink element, that is in thermal contact with a trim element, that is stacked, that is in thermal contact with at least a first portion of a first surface of the trim element, that has a cross-sectional area at a first distance from an axis of a trim element that is larger than at a shorter distance, and/or that maintains a junction temperature of a lighting device at or below a recommended junction temperature. Also, a lighting device comprising at least a first light source, a trim element, a driver sub-assembly and a spacer element positioned between the trim element and the driver sub-assembly. Also, methods of dissipating heat.
Abstract:
Fixtures, apparatuses, and related methods are provided that provide for a non-Edison connection for receiving a lamp housing of a lighting device having a non-Edison connector. The fixture can include a fixture housing and a non-Edison socket securable to the fixture housing. The fixture can also include an engagement device for engaging a lamp housing of a lighting device that has a non-Edison connector upon insertion of the lamp housing into the fixture housing and engaging the non-Edison socket.
Abstract:
A hybrid reflector system for use in lighting application. The system is particularly well-suited for use with solid state light sources, such as light emitting diodes (LEDs). Embodiments of the system include a bowl-shaped outer reflector and an intermediate reflector disposed inside the bowl and proximate to the light source. The reflectors are arranged to interact with the light emitted from the source to produce a beam having desired characteristics. Some of the light passes through the system without interacting with any of the reflector surfaces. This uncontrolled light, which is already emitting in a useful direction, does not experience optical loss normally associated with one or more reflective bounces. Some of the light emanating from the source at higher angles that would not be emitted within the desired beam angle is reflected by one or both of the reflectors, redirecting that light to achieve a tighter beam.
Abstract:
A modular troffer-style fixture particularly well-suited for use with solid state light sources. The fixture comprises a reflector that includes parallel rails running along its length, providing a mount mechanism and structural support. An exposed heat sink is disposed proximate to the reflector. The portion of the heat sink facing the reflector functions as a mount surface for the light sources. The heat sink is hollow through the center in the longitudinal direction. The hollow portion defines a conduit through which electrical conductors can be run to power light emitters. One or more light sources disposed along the heat sink mount surface emit light toward the reflector where it can be mixed and/or shaped before it is emitted from the troffer as useful light. End caps are arranged at both ends of the reflector and heat sink, allowing for the easy connection of multiple units in a serial arrangement.
Abstract:
Lighting retrofit systems and methods are disclosed that can be used with different light fixtures, but that are particularly adapted for use with retrofitting troffer-style fixtures with LED based light engines. The retrofit systems being assembled without disturbing the lighting or troffer pan or housing (“troffer pan”) for the lighting system being retrofitted. Some of these embodiments can comprise a mounting fixture or frame that can be mounted in an opening in a ceiling grid, and held in place between the grid and the troffer pan edge. The fixture or frame can comprise an opening for a light engine, with the engine being quickly and easily connected to electrical power in the troffer pan and then mountable within the frame opening. These embodiments can allow for the quick and easy construction of the retrofit system without the need for adhesives and fasteners such brackets and screws.
Abstract:
A modular troffer-style lighting fixture. The fixture is particularly well-suited for use with solid state light sources, such as LEDs. Embodiments comprise a pan structure designed to house one or more modular light engine units within a central opening. Each light engine unit includes a reflective cup that can house several light sources on an interior mount surface. The cup is positioned proximate to a back reflector such that its open end faces a portion of the back reflector. The back reflector is shaped to define an interior chamber where light can be mixed and redirected. At least one elongated leg extends away from the reflective cup toward an edge of said back reflector. The leg(s) are used to mount the reflective cup relative to the back reflector and may also be used as a heat sink and/or an additional mount surface for light sources.