Abstract:
A double-radiant-source framework used for a radiation detecting system for containers, having a horizontal accelerator, a vertical accelerator and a gantry tower composed of a left vertical girder, a right vertical girder, an upper cross girder, and a lower cross girder. A horizontal collimator and accelerator, and a vertical collimator and accelerator, are fixed on the left vertical girder and the upper cross girder of the gantry tower, respectively, and emit radiation beams as two planes oriented parallel to each other. Detector modules are disposed inside the double-detector arm of the right vertical girder, and inside the upper cross girder and the lower cross girder, respectively, to receive the two emitted planes of radiation beams. The container detecting system can reduce the area covered by the scanning channel of the system, and make the transportation, installation and use convenient, and improve the quality of the detected images.
Abstract:
A trailer system for radiation imaging, comprising a trailer including a frame, a plurality of guide wheels and connecting hooks, and anchoring devices, the frame comprises an intermediate section in the form of a H-shaped frame beam, a left frame bed and a right frame bed are connected to hinge shafts provided on four corner portions of the H-shaped frame beam, a positioning recess is provided centrally in an upper surface of each left and right frame beds, a wheel-catching means is provided at a rear end of each positioning recess, an upslope and a downslope daises are provided on a front end and a rear end of each of the left and the right frame beds, a support plate is provided at an outside end of each of the left and right frame beds, and a striking block is provided centrally at an outside of each support plate. The present invention requires low installation accuracy of the rails, and employs simultaneously moveable upslope and downslope daises convenient for mounting and using, thus increasing reliability, stability and practicability of the trailer.
Abstract:
A trailer of an automatically scanning-type radiation inspecting system used for large-sized object, comprising a trailer body provided with a bevel portion at a tail end of a top surface thereof and positioning recesses adaptive to lower portions of front wheels of a vehicle carrying objects to be inspected respectively, a plurality of pairs of guide wheels mounted to a bottom surface of the trailer body and can be supported and run on rails, connection rods provided at front and rear ends of the bottom surface of the trailer body and used for connecting to wire ropes of winches respectively, anchoring hooks provided at front and rear ends of the bottom surface of the trailer body and used for engaging with wedges arranged on the ground, and holding means provided at front and back sides of the positioning recesses and used for holding the front wheels of the vehicle in the positioning recesses during movement of the trailer. During operation of the trailer of present invention, the trailer pulls the vehicle carrying objects to be inspected to pass through the inspection passage smoothly while the front wheels of the vehicle are held in the positioning recesses on the trailer and rear wheels thereof roll over the ground. The trailer-conveying apparatus formed by the trailer of the present invention and winches occupies less land, being low in cost, simple in structure, reasonable in design, advantageous to shield the radiation, and easy to be maintained.