Abstract:
The graphene device may include an upper oxide layer on at least one embedded gate, and a graphene channel and a plurality of electrodes on the upper oxide layer. The at least one embedded gate may be formed on the substrate. The graphene channel may be formed on the plurality of electrodes, or the plurality of electrodes may be formed on the graphene channel.
Abstract:
Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
Abstract:
An organic light emitting display includes a gate electrode on a substrate, an active layer insulated from the gate electrode, source and drain electrodes that are insulated from the gate electrode and contact the active layer, an insulating layer between the active layer and the source and drain electrodes, a light blocking layer that is on the active layer and that blocks light of a predetermined wavelength from the active layer, and an organic light emitting device that is electrically connected to one of the source and drain electrodes.
Abstract:
A method of transferring graphene includes patterning an upper surface of a substrate to form at least one trench therein, providing a graphene layer on the substrate, the graphene layer including an adhesive liquid thereon, pressing the graphene layer with respect to the substrate, and removing the adhesive liquid by drying the substrate.
Abstract:
According to example embodiments, a graphene switching devices has a tunable barrier. The graphene switching device may include a gate substrate, a gate dielectric on the gate substrate, a graphene layer on the gate dielectric, a semiconductor layer and a first electrode sequentially stacked on a first region of the graphene layer, and a second electrode on a second region of the graphene layer. The semiconductor layer may be doped with one of an n-type impurity and a p-type impurity. The semiconductor layer may face the gate substrate with the graphene layer being between the semiconductor layer and the gate substrate. The second region of the graphene layer may be separated from the first region on the graphene layer.
Abstract:
Disclosed are an oxide semiconductor and a thin film transistor (TFT) including the same. The oxide semiconductor may include a lanthanoid (Ln) added to zinc oxide (ZnO) and may be used as a channel material of the TFT.
Abstract:
Disclosed is a control apparatus and method of a clothes treating machine. Power consumption can be expected or detected when an operation of the clothes treating apparatus is determined, and greenhouse gas emissions to an energy source or electricity prices according can be expected on the basis of power consumption. In addition, reasonable operations can be determined on the basis of recommended operation conditions provided by the clothes treating apparatus, and power consumption of the clothes treating machine, greenhouse gas emissions to an energy source or electricity prices can be easily calculated without providing an additional complicated power detection circuit.
Abstract:
A thin film transistor (TFT) using an oxide semiconductor layer as an active layer, a method of manufacturing the TFT, and a flat panel display (FPD) including the TFT are taught. The TFT includes a gate electrode formed on a substrate, an oxide semiconductor layer electrically insulated from the gate electrode by a gate insulating layer, and the oxide semiconductor layer including a channel region, a source region, and a drain region, and a source electrode and a drain electrode respectively electrically contacting the source region and the drain region. The oxide semiconductor layer is formed of an InZnO or IZO layer (indium zinc oxide layer) including Zr. The carrier density of the IZO layer is controlled to be 1×1013 to 1×1018 #cm−3 by controlling an amount of Zr.
Abstract:
An apparatus and method for detecting a signal in a Multiple-Input Multiple-Output (MIMO) system are provided. The method includes filtering each stream of a received signal, acquiring a new search space by acquiring a set of candidates having reliability greater than a threshold with respect to each filtered stream, and detecting a signal for each stream of the new search space.
Abstract:
A graphene electronic device includes a graphene channel layer on a substrate, a source electrode on an end portion of the graphene channel layer and a drain electrode on another end portion of the graphene channel layer, a gate oxide on the graphene channel layer and between the source electrode and the drain electrode, and a gate electrode on the gate oxide. The gate oxide has substantially the same shape as the graphene channel layer between the source electrode and the drain electrode.