Abstract:
Disclosed herein is a method of manufacturing a conductive transparent substrate. The method of manufacturing a conductive transparent substrate includes (A) forming a transparent electrode on one surface of a transparent film; (B) forming a release function film on a portion of the transparent electrode on which a pattern is formed; (C) removing the outside of the transparent electrode exposed on the transparent film; (D) removing the release function film; and (E) forming a pattern on the transparent electrode from which the release function film is removed, whereby it is possible to prevent the transparent electrode from being damaged due to washing water, thereby making it possible to improve manufacturing reliability.
Abstract:
Disclosed herein is a method of manufacturing a touch screen, including; preparing two sheets of transparent substrate on which transparent electrodes are formed; preparing a substrate on which a release film is formed; printing dot spacers on the release film and curing the dot spacers; transferring the dot spacers to the transparent electrode by stacking the substrate on the transparent substrate so that the dot spacers are in contact with the transparent electrode; and bonding the outer sides of the two sheets of transparent substrates by an adhesive layer so that the transparent electrodes formed on the two sheets of transparent substrates face each other. The dot spacers are previously cured on the release film and then transferred to the transparent electrode, thereby making it possible to prevent the transparent electrode from being damaged due to a curing process of the dot spacers.
Abstract:
Disclosed herein is a touch panel, including: a transparent substrate; a transparent electrode made of a conductive polymer and formed on one surface of the transparent substrate; an anisotropic conductive adhesion layer formed on an edge of the transparent electrode; and an electrode formed on the anisotropic conductive adhesion layer and electrically connected with the transparent electrode by the anisotropic conductive adhesion layer. The touch panel is advantageous in that the anisotropic conductive adhesion layer is disposed between the transparent electrode and the electrode, so that the chemical reaction between the transparent electrode and the electrode can be prevented, with the result that the resistance between the transparent electrode and the electrode can be maintained constant and the change in physical properties of the transparent electrode can be prevented.
Abstract:
Disclosed herein is a touch panel. The touch panel includes a transparent substrate and a plurality of transparent electrodes. The transparent electrodes are formed on one surface of the transparent substrate. Each of the transparent electrodes includes a touch part formed to have an identical width and a connection part configured in a stepped form along with the touch part and configured to connect the touch part with the transparent substrate.
Abstract:
Disclosed herein is a capacitive touch panel including: a transparent substrate, a transparent electrode formed on the transparent substrate, the transparent electrode being made of a conductive polymer, a transparent protective layer formed on the transparent electrode, the transparent protective layer having transparent characteristics, and a transparent adhesive formed on the transparent protective layer. According to the present invention, the transparent protective layer is further formed between the transparent electrode and the transparent adhesive to prevent reactivity between the transparent electrode and the transparent adhesive, thereby making it possible to improve operation reliability of the touch panel.
Abstract:
Disclosed herein is a method of manufacturing a touch screen, including: (A) preparing a transparent substrate; (B) forming a patterned transparent electrode including a conductive polymer on the transparent substrate and allowing patterns of the transparent electrode in different columns to be connected by a connection part; and (C) removing the connection part of the transparent electrode. The method of manufacturing a touch screen forms the transparent electrode so that the patterns in different columns are definitely spaced apart from each other to accurately detect touched positions.
Abstract:
Disclosed herein is a touch panel 100 including: a transparent electrode 120 formed on one surface of a transparent substrate 110, a protective layer 130 formed at the side surface of the transparent electrode 120 so that its upper end 133 surrounds the edge of one surface of the transparent electrode 120 and its lower end 137 protrudes in the edge direction of the transparent substrate 110, and an electrode wiring 140 that is formed at the side surface of the protective layer 130 so as to surround the lower end 137 of the protective layer 130 protruding in the edge direction of the transparent substrate 110. The protective layer 130 is interposed between the transparent electrode 120 and the electrode wiring 140 to prevent the electromigration (EM).
Abstract:
Disclosed herein are a one-layer capacitive touch screen and a method of manufacturing the same. The one-layer capacitive touch screen includes: a base substrate; a first electrode pattern that is formed on an upper surface of the base substrate and includes a plurality of first sensing units and first connection units connecting the adjacent first sensing units; a second electrode pattern that is formed on the upper surface of the base substrate and includes a plurality of second sensing units and second connection units connecting the adjacent second sensing units, the second connection units being formed to intersect with each other on the upper side of the first connection unit, having an air gap therebetween; and an electrode wiring that is connected to the first electrode pattern and the second electrode.
Abstract:
Disclosed herein are a transparent conductive substrate and a method of manufacturing the same, and a touch screen using the same. The transparent conductive substrate includes a transparent substrate, a transparent electrode that is formed and patterned on the transparent substrate, and a primer that is formed between the transparent substrate and the transparent electrode and is patterned to have a pattern corresponding to the transparent electrode. The transparent electrode is easily patterned by previously patterning the primer to correspond to the transparent electrode and residues do not remain on the transparent substrate.
Abstract:
Disclosed herein is a display device having a capacitive touch screen, including: a display unit; and a capacitive touch screen that is coupled to the display unit by an adhesive layer and includes a base substrate, a plurality of first electrode patterns that are formed on an active region of the base substrate, ground patterns that are formed on the active region of the base substrate and are separated from the first electrode pattern, a transparent insulating layer that covers the first electrode patterns and the ground patterns and is formed on the base substrate, and a plurality of second electrode patterns that are formed on an active region of the transparent insulating layer.