Abstract:
A light emitting diode includes a lens, a chip base attached to a bottom of the lens, and an LED chip attached in the chip base to be concentric with the lens. The lens includes a bottom, an outer sidewall extending from the bottom, a first outer top surface extending from the outer sidewall, a second outer top surface extending from the first outer top surface and having a substantially conical groove-like shape, an inner sidewall forming a side of a central cavity formed by hollowing a central portion of the bottom, and an inner top surface extending from the inner sidewall and forming a ceiling of the central cavity. The substantially conical groove-like shaped second outer top surface has an angular point formed toward the central cavity, and the inner top surface is convexly formed toward the bottom.
Abstract:
A liquid crystal display that includes a plurality of pixels configured to display four colors, and a color gamut mapping unit configured to convert three color input image signals into four color image signals, wherein when the three color input image signals include yellow, the color gamut mapping unit converts the three color input image signals based on a hue shift of the yellow.
Abstract:
A transparent display device includes a liquid crystal display (LCD) module and a transparent reflector. The LCD module includes an LCD panel having a liquid crystal layer, a light source providing light to the LCD panel, and a polarizing plate disposed between the light source and the LCD panel to polarize light from the light source. The transparent reflector and the LCD module are spaced apart. The transparent reflector displays the image by reflecting the image provided from the LCD panel. The transparency of the transparent reflector may be controlled, and the transparent reflector may have a curved shape.
Abstract:
A liquid crystal display (LCD) apparatus includes an LCD panel and light-emitting units. The light-emitting units generate lights in a corresponding light-emitting interval to illuminate a part of the LCD panel corresponding to the light-emitting units. A light-emitting ending point of the light-emitting interval is disposed between a first maximum light-transmitting time of a first region of the part of the LCD panel and a second maximum light-transmitting time of a second region of the part of the LCD panel, the first region corresponding to the first gate line of gate lines belonging to the part of the LCD panel illuminated by the light-emitting unit and the second region corresponding to the last gate line of the gate lines.
Abstract:
The present invention provides an optical film composite that comprises a linear, reflective polarizing film; a first polymeric substrate layer having birefringence, which is placed on the reflective polarizing film; and a second polymeric substrate layer placed beneath the reflective polarizing film, wherein the optical axis of the first polymeric substrate layer is oriented with respect to the transmission axis of the reflective polarizing film to have of 0° to 25° of an angular difference between the axes. The optical film composite can be employed in LCD devices to improve optical performance.
Abstract:
There are provided a method of regulating a phosphorylated protein-mediated intracellular signal transduction comprising intracellularly expressing an antibody that specifically binds to the phosphorylated protein and an expression system for intracellular expression of the antibody. The method and system are effectively used in the investigation, prevention, or treatment of diseases caused by a phosphorylated protein-mediated intracellular signal transduction, including prostate cancer, lung cancer and breast cancer, through regulation of a molecular interaction involving a phosphorylated residue of the phosphorylated protein.
Abstract:
A DC-DC converter includes a main inductor connected to an input voltage, a main switching element connected in series to the main inductor, a main diode connected to the main inductor and a load, and a main capacitor connected to the main diode and the load, the DC-DC converter changing the input voltage to output a changed input voltage as an output voltage. The DC-DC converter further includes an oscillator connected between the main inductor and the main diode, an auxiliary switching element connected to the oscillator, the auxiliary switching element changing an operation state based on an externally applied control signal to control the oscillator, and a diode unit connected to the oscillator and the auxiliary switching element and controlling current flow based on operations of the oscillator and the auxiliary switching element to change the output voltage. The main switching element and the main diode are to be zero voltage switching or zero current switching in accordance with the operations of the oscillator and the auxiliary switching element.
Abstract:
A light source for a display device includes a board and light emitting diodes mounted on the board. The light emitting diodes include a white light emitting diode which emits white light and a red light emitting diode which emits red light.
Abstract:
A liquid crystal display (LCD) apparatus displaying a color image of a frame by dividing the frame into a plurality of periods in which different colors are displayed includes an LCD panel and light-emitting units. The light-emitting units are disposed under the LCD panel and generate lights having different colors in corresponding periods during a light-emitting interval. For example, the turn-on times of the light-emitting units are sequentially delayed as much as the voltage-transmittance response waveform of the liquid crystal is delayed from the first light-emitting unit to the last light-emitting unit. The light-emitting interval of a first region of the LCD panel ends shortly after its maximum value is reached corresponding to a first gate line of a light-emitting unit, and the light emitting interval of a second region corresponding to a last gate line of the light-emitting unit is delayed to maximize luminance.
Abstract:
A lens for a light emitting diode is formed with a material having a refractive index of n, and the lens includes a base, a first curved circumferential surface extending from the base, a curved center-edge surface extending from the first curved circumferential surface, and a curved centermost surface extending from the curved center-edge surface. The base includes a groove for receiving a light emitting chip therein. In the lens, a distance from a center of the base to a point of the curved center-edge surface is always shorter than the radius of curvature for the point of the curved center-edge surface. The curved centermost surface has a concave shape with respect to the base. In addition, when an obtuse angle formed between a main axis of the lens and a tangent line of a point of the curved centermost surface is A1, and an acute angle formed between a straight line linking the center of the base to the point of the curved centermost surface and the main axis of the lens is A2, the lens satisfies the equation: A1+A2